06 July 2020

Architectural Railing Division C.R.Laurence Co., Inc. 2503 E Vernon Ave. Los Angeles, CA 90058

SUBJ: GRS – GLASS RAIL SYSTEM – TOP RAILS AND HANDRAILS

The GRS Glass Rail System utilizes an aluminum extruded base shoe to anchor and support structural glass balustrades which support a variety of top rails and handrails to construct guards and dividers. The GRS may be used for residential, commercial and industrial applications except for vehicle impacts. The GRS is designed for the following:

On Cap/Top/Hand/Grab Rail:

Concentrated load = 200 lbs any direction, any location Uniform load = 50 plf, any direction perpendicular to rail

The GRS system will meet all applicable requirements of the 2012 and 2009 International Building Code and state codes adopted from them, 2013 and 2010 California Building Code, *Florida Building Code, and 2012 and 2009 International Residential Code.* The GRS System complies with ASTM E 2358-04 Standard Specification for the Performance of Glass in Permanent Glass Railing Systems, Guards, and Balustrades. Aluminum components are designed in accordance with the 2005 Aluminum Design Manual. Stainless steel components are designed in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members. Wood components are designed in accordance with the National Design Specification for Wood Construction. Glass lights are designed in accordance with AAMA CW 12-84 Structural Properties of Glass. When constructed as recommended the guards will meet the testing requirements of ICC AC 439 Acceptance Criteria for Glass Railing and Balustrade System, ASTM E-2353-06 Standard Test Methods for Performance of Glass in Permanent Glass Railing Systems, Guards and *Balustrades*. For a complete code compliant installation an appropriate cap/top rail or grab rail shall be installed on appropriately sized glass installed in a matching base shoe properly mounted to the supporting structure. This report is in support of the the approval of the system in ESR-3269.

CONTENTS: Item Page 3 Signature Page Cap Rails Design 4 Stainless steel and brass round cap rails 5 - 6 GR 15 Cap Rail Conn. Sleeves/Corners 7 GR 16 8 9 - 10 **GR 20 GR 25** 11 - 12 13 - 14 **GR 30 GR 35** 15 - 16 GR 40 17 - 18 GR 207 19 GR 257 20 - 21 GR 307 22 - 23 **GR 19 Aluminum** 24 25 **GR 25 Aluminum GR 30 Aluminum** 26 **GR 35 Aluminum** 27 28 **GROV4** Aluminum 29 **GR307M** Aluminum Aluminum welded corners 30 Stabilizing end caps 31 Wood Cap Rails 32 Square stainless steel cap rails GRS15/GRSC15 33 34 GRS20/GRSC20 35 GRS25 **SRF15** 36 SRF20 37 GRLC10 38 GRL10 39 40 GRL107/GRLC107 L10 41 42 GRRF15 GRRF20 43 44 LR20 LR25 45 46 Blumcraft 324 GRL107MBL 47 L10MBL 48 **GRL10MBL** 49

Grab Rails Design	50
1-1/4" Schedule 40 Stainless	51
1-1/2" Schedule 40 Stainless	52
1-1/2" x 1/8" Tube Stainless	53
1-1/2" x 0.05" Tube Stainless	54
2" x 0.05" Tube Stainless	55
1-1/4" Schedule 40 Aluminum	56
1-1/2" Schedule 40 Aluminum	57
1-1/2" x 1/8" Tube Aluminum	58
GRAB RAIL BRACKETS	
Grab Rail Bracket attachment	59
Bracket mounted to glass	60
HR2S	61
HR2D	62
HR2E	63
HR3E	64
HR2F	65
HR15G/HR20G La Jolla	66
HR15G/HR20G Pismo	67
HR2J	68
HR5E	69
Bracket attachment to wood	70
S. Steel Plate End Post	71

TOP/CAP RAILS DESIGN

Guard applications require a top rail or handrail. The rail shall have adequate strength to support the live load of 200 lb concentrated or 50 plf distributed load assuming the failure of one glass light at the location of the loading. No US building codes or adopted standards define the limit state of the guard cap rail for this condition. IBC 2407.1.2 states "shall be otherwise supported to remain in place should one baluster fail." There is no additional explanation in the IBC as to how this is to be determined. ICC Acceptance Criteria 439 was adopted to provide a methodology for determining if a glass balustrade guard meets the requirements of IBC 2407. ICC AC 439 requires the rail to be capable of supporting a 334# load (SF = 1.67 for 200# load) with no more than 12" deflection, yielding or other damage is permitted since the loss of a glass light will necessitate guard repairs. For light failure only the horizontal load case applies for laminated glass. The terms top rail and cap rails are synonymous herein.

Stainless Steel Cap Rails:

The stainless steel cap rails are fabricated from 304 or 316 annealed sheet. The rail strength was evaluated in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members.

From Section 3.3.1.1 *Nominal section strength* 2. *Procedure II - Based on Inelastic Reserve Capacity:*

 $M_n = 1.25 S_e F_v$

 $\phi = 1.0$ (Small local distortions are acceptable)

or for ultimate strength

 $M_{nult} = S_e F_{cr}$

 F_{cr} is a function of rail geometry and is the maximum extreme fiber stress at compression element buckling failure.

Cap Rail Bending Moments

For a typical installation the cap rail will be continuous supported along at least one glass light with a simple support on the opposite end or cantilevered.

The bending moments are conservatively estimated as:

 $M_w = wL^2/10$ For uniform load case

 $M_c = PL/5$ For concentrated load at mid span load case

Or for cantilevered case, end light failure

 $M_{wc} = wL^2/2$ For uniform load case

 $M_{cc} = PL$ For concentrated load at end of rail

Brass Cap Rails: No design standard exists for brass therefore design is based on a either bending tension yield or compression buckling whichever controls with 1.6 load factor and 0.9 resistance factor.

NOTE: The cap rail properties, strengths and maximum spans herein are provided to assist the specifier in the selection of an appropriate cap rail. It is the specifier's responsibility to determine suitability for a specific application.

GR 15 SERIES CAP RAIL

Area: 0.3343 sq in 1.5000 Perim: 13.093 in Ixx: 0.0504 in⁴ I_{yy}: 0.07395 in⁴ 2982 rxx: 0.3883 in r_{vv}: 0.4703 in Cxx: 0.6647 in C_{vv}: 0.75 in S_{xx}: 0.07583 in³ or 0.07956 in³ Svy: 0.09859 in³ t = 0.05 in Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed 304 stainless steel sheet used to form the rail. $F_{cr} = \underline{\pi^2 k \eta E_0}$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 339.9 \text{ ksi but} \le F_U$ $12(1-0.3^2)(0.5991''/0.05'')^2$ $M_n = 1.25 * S_e F_v = 1.25 * 0.07583 * 30 \text{ ksi} = 2.844 \text{ k}$ Vertical loading Controls 1.25*0.09859*30 ksi = 3.697 k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.07583*75 \text{ ksi} = 5.687 \text{ k}$ " Vertical load 0.09859*75 ksi = 7.394 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection), multiple spans Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (2,844/12 • 10/(1.6*50plf))^{1/2} = 5.443' concentrated \rightarrow L = 2,844*5/(334#) = 42.57" = 3' -6 9/16" ultimate strength \rightarrow L = 5,687*4/(334#) = 68.1" = 5' 8" Horizontal \rightarrow uniform \rightarrow L= (3,697/12 • 10/(1.6*50plf))^{1/2} = 6.206' = 6' - 1.5" concentrated \rightarrow L = 3,697*5/(334#) = 55.34" = 4'-7 5/16" ultimate strength \rightarrow L = 7,394*4/(334#) = 88.5" = 7'-4 1/2" L = 5,678/334" = 17" Cantilever: Maximum glass light length for GR 15 SS rail is 4'7"

GR 15 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*} 4.0* 0.49* 16.9 \times 10^{3} \text{ ksi}}{16.9 \times 10^{3} \text{ ksi}} = 214.6 \text{ ksi but} \le F_{y}$ $12(1-0.34^2)(0.5991''/0.05'')^2$ $M_n = S_e F_v = 0.07583*43 \text{ ksi} = 3.261 \text{ k}$ " Vertical loading Controls 0.09859*43 ksi = 4.128 k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*3,261/12 • 10/(1.6*50plf))^{1/2} = 5.529' concentrated $\rightarrow L = 0.9*3,261*5/(334\#) = 43.94" = 3' - 7 15/16"$ cantilevered $\rightarrow L = 0.9*3.261/(334\#) = 8.79"$ Horizontal \rightarrow uniform \rightarrow L= (0.9*4,128/12 • 10/(1.6*50plf))^{1/2} = 6.221' = 6' - 2.5/8" concentrated \rightarrow L = 0.9*4,128*5/(334#) = 55.62" = 4' -7 5/8" cantilevered $\rightarrow L = 0.9*4, 128/(334\#) = 11.123"$

Maximum glass light length with 1-1/2" brass rail is 3'7"

Connector Sleeves

The sleeves fit tight (radial compression required) inside the rail and are secured with adhesive. The sleeve provides shear transfer between rail sections, vertically and horizontally. The sleeves can be used to connect straight or curved rail sections to corners and other rail sections.

Minimum shear strength of connectors: For stainless steel:

For Brass:

$$\begin{split} F_{yv} &= 25 \text{ ksi} \\ t &= 0.05", h = 2.95" \text{ (for } 1\text{-}1/2" \text{ rail)} \\ V_n &= 0.95*(25 \text{ ksi}*0.05"*2.95") = 3,503\# \text{ controls} \\ V_s &= \emptyset V_n/1.6 = 0.85*3,503/1.6 = 1,861\# \end{split}$$

Welded Corners

Constructed from the standard rail sections. Corners are welded all around full thickness of metal. Load on corner is limited to shear and tension at corner.

Shear strength is same as the connector sleeve (weld length is same as connector perimeter)

 $\begin{array}{l} Tension: = 1/0.6*V = 1.667V \\ T_{ss} = 1.667*1,265\# = 2,108\# \\ T_{br} = 1.667*1,861 = 3,102\# \end{array}$

Maximum load, shear or tension is 200# therefore okay.

Custom Angle Corners

Corners may be welded at any angle, vertical or horizontal angles.

Compound angles may be used.

The strength of the angle is not decreased below that for the 90° angle used for the standard calculation therefore strength adequacy is demonstrated for all angles.

EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Page 7 of 71

GR 16 SERIES CAP RAIL

Area: 0.3695 sq in 1.6600 Perim: 14.02 in Ixx: 0.06699 in⁴ I_{yy}: 0.10145 in⁴ 3960 rxx: 0.4258 in r_{vv}: 0.524 in Cxx: 0.73135 in C_{vv}: 0.830 in S_{xx}: 0.0916 in³ or 0.1008 in³ S_{vv}: 0.1222 in³ t = 0.05 in Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. $F_{cr} = \underline{\pi^2 k \eta E_0}$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.50$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*}4.0*0.50*27.0 \text{ x}10^3 \text{ ksi} = 250.4 \text{ ksi but} \le F_U$ 12(1-0.32)(0.698"/0.05")2 $M_n = 1.25 * S_e F_v = 1.25 * 0.0916 * 30 \text{ ksi} = 3,435 \text{ k}$ " Vertical loading Controls 1.25*0.1222*30 ksi = 4.583 k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.0916*75$ ksi = 6.870 k" Vertical load 0.096*75 ksi = 7.2 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection), multiple spans Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (3,435/12 • 10/(1.6*50plf))^{1/2} = 5.982' concentrated $\rightarrow L = 3,435*5/(334\#) = 51.42'' = 4'33/8''$ ultimate strength \rightarrow L = 6,870*4/(1.6*200#) = 85.875" = 6' 4 7/8" Horizontal \rightarrow uniform \rightarrow L= (4,583/12 • 10/(1.6*50plf))^{1/2} = 6.909' concentrated $\rightarrow L = 4.583 \times 5/(334\#) = 68.61'' = 5' \times 8-5/8''$ ultimate strength \rightarrow L = 7,200*4/(334#) = 86.23" Cantilever: L = 6.870/334" = 20.57"

CRL GR 20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.473 sq in Perim: 17.78 in I_{xx} : 0.142 in⁴ I_{yy} : 0.174 in⁴ r_{xx} : 0.548 in r_{yy} : 0.606 in C_{xx} : 0.980 in C_{yy} : 1.000 in S_{xx} : 0.148 in³ or 0.138 S_{yy} : 0.169 in³ t = 0.05"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

(eq 3.3.1.1-9) $F_{cr} =$ $\pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A8a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 135.2 \text{ ksi but} \le F_U$ $12(1-0.3^2)(0.95"/0.05")^2$ $M_n = 1.25 * S_e F_v = 1.25 * 0.138 * 30 \text{ ksi} = 5.18 \text{k}$ " Vertical loading Controls 1.25*0.169*30 ksi = 6.33k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.148*75$ ksi = 11.1k" Vertical load Controls 0.169*75 ksi = 12.675k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Horizontal \rightarrow uniform \rightarrow L= (6,330/12 • 10/(1.6*50plf))^{1/2} = 8.12' concentrated $\rightarrow L = 6,330*5/(334\#) = 94.76" = 7' 10^{3}4"$ cantilevered $\rightarrow L = 6.330/(334\#) = 18.95" = 1'6 15/16"$ ULTIMATE STRENGTH Vertical \rightarrow uniform \rightarrow L= (11,100/12•8/(1.6*50plf))^{1/2} = 9.617' = 9'-7 ³/₈" concentrated \rightarrow L = 11,100*4/(334#) = 132.93" cantilevered \rightarrow L = 11,100/(334#) = 33.23" = 2'9 1/4"

GR 20 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*} 4.0* 0.49* 16.9 \times 10^{3} \text{ ksi}}{\pi^{2*} 16.9 \times 10^{3} \text{ ksi}} = 87.75 \text{ ksi but} \le F_{y}$ $12(1-0.34^2)(0.95^{"}/0.05^{"})^2$ $M_n = S_e F_v = 0.138*43 \text{ ksi} = 5.934 \text{ k}$ " Vertical loading Controls 0.169*43 ksi = 7,267 k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*5,934/12 • 10/(1.6*50plf))^{1/2} = 8.333' = 8'-4" concentrated $\rightarrow L = 0.9*5,934*5/(334\#) = 79.95" = 6' - 7 15/16"$ cantilevered $\rightarrow L = 0.9*5.934/(334\#) = 16" = 1'4"$ Horizontal \rightarrow uniform \rightarrow L= (0.9*7,267/12•10/(1.6*50plf))^{1/2} = 8.254' = 8'- 3" concentrated $\rightarrow L = 0.9*7,267*5/(334\#) = 97.91" = 8'-17/8"$

cantilevered \rightarrow L = 0.9*7,267/(334#) = 19.58 = 1' - 7 9/16"

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 25 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.656 sq in I_{xx} : 0.333 in⁴ I_{yy} : 0.387 in⁴ r_{xx} : 0.712 in r_{yy} : 0.768 in C_{xx} : 1.213 in C_{yy} : 1.250 in S_{xx} : 0.274 in³ or 0.259 S_{yy} : 0.310 in³ t = 0.0625" 2.50

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

 $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.50*27.0 \text{ x}10^3 \text{ ksi} = 84.7 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.20"/0.0625")² $M_n = 1.25 * S_e F_v = 1.25 * 0.274 * 30 \text{ ksi} = 10.27 \text{k}$ " Vertical loading Controls 1.25*0.310*30 ksi = 11.62k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.259*75$ ksi = 19.425k" Vertical load **Controls Ultimate** 0.310*75 ksi = 23.25k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (10,270/12 • 10/(1.6*50plf))^{1/2} = 9.722' concentrated \rightarrow L = 10.270*5/(334#) = 153.74 cantilevered \rightarrow L = 10.270/(334#) = 30.75" = 2' 6 3/4"

ULTIMATE STRENGTH

Vertical → uniform → L= $(19,425/12 \cdot 8/(1.6 \cdot 50 \text{ plf}))^{1/2} = 12.723'$ concentrated →L = $19,425 \cdot 4/(334\#) = 232.63''$ cantilevered →L = $19,425/(334\#) = 58.16'' = 4' \cdot 10 \cdot 1/8''$

GR 25 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*} 4.0* 0.49* 16.9 \text{ x} 10^3 \text{ ksi}}{16.9 \text{ x} 10^3 \text{ ksi}} = 53.48 \text{ ksi but} \le F_y$ 12(1-0.34²)(1.2"/0.05")² $M_n = S_e F_v = 0.274*43 \text{ ksi} = 11.782 \text{ k}^{"}$ Vertical loading 0.310*43 ksi = 13.33 k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*11,782/12 • 10/(1.6*50plf))^{1/2} = 10.51' = 10'-6" concentrated \rightarrow L = 0.9*11,782*5/(334#) = 158.74" = 12' 3.5" cantilevered \rightarrow L = 0.9*11,782/(334#) = 31.75" = 2'7 3/4" Horizontal \rightarrow uniform \rightarrow L= (0.9*13,330/12 • 10/(1.6*50plf))^{1/2} = 11.178' - 11'-2" concentrated \rightarrow L = 0.9*13,330*5/(334#) = 179.60 cantilevered \rightarrow L = 0.9*13,330/(334#) = 35.92" = 2' 11 7/8"

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

Page 13 of 71

CRL GR 30 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.755 sq in I_{xx} : 0.608 in⁴ I_{yy} : 0.653 in⁴ r_{xx} : 0.897 in r_{yy} : 0.930 in C_{xx} : 1.54 in C_{yy} : 1.50 in S_{yy} : 0.405 in³ S_{xx} : 0.424 in³ or 0.447 in³ t = 0.0625"

Allowable stresses:

For stainless steel options: design using

SEI/ASCE 8-02

From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

(eq 3.3.1.1-9) $F_{cr} =$ $\pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.50*27.0 \text{ x}10^3 \text{ ksi} = 63.2 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.375"/0.0625")² $M_n = 1.25S_eF_y = 1.25*0.424*30$ ksi = 15.9k" Vertical loading 1.25*0.405*30 ksi = 15.19k" Horizontal load Controls or $M_{ULT} = S_f F_{cr} = 0.447*63.2 \text{ ksi} = 28.25 \text{k}$ " Vertical load 0.405*63.2 ksi = 25.596k" Horizontal load Controls Ultimate Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Horizontal \rightarrow uniform \rightarrow L= (15,190/12 • 10/(1.6*50plf))^{1/2} = 12.579' concentrated \rightarrow L = 15,195*5/(334#) = 227.47" = 18' 11.47" ULTIMATE STRENGTH Horizontal \rightarrow uniform \rightarrow L= (25,596/12 • 8/(1.6*50plf))^{1/2} = 14.60' concentrated \rightarrow L = 25,596*5/(334#) = 383" cantilevered $\rightarrow L = 25,596/(334\#) = 76.63" = 6' 4 5/8"$ cantilevered $\rightarrow L = \sqrt{[2*25,596/12/(1.8*50\#)]} = 6.885'$ EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

GR 30 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*}4.0*0.49*16.9 \times 10^3 \text{ ksi}}{16.9 \times 10^3 \text{ ksi}} = 40.7 \text{ ksi but} \le F_y$ 12(1-0.342)(1.375"/0.05")2 $M_n = S_e F_v = 0.424*43 \text{ ksi} = 18,232 \text{ k}$ " Vertical loading 0.405*43 ksi = 17,415 k" Horizontal load or $M_n = S_f F_{cr} = 0.447*40.7$ ksi = 18,193 k" Vertical load Controls 0.405*40.7 ksi = 16,483 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*18,193/12 • 10/(1.6*50plf))^{1/2} = 14.6' concentrated $\rightarrow L = 0.9*18,193*5/(1.6*200\#) = 255"$ cantilevered \rightarrow L = 18,193/(334#) = 54.47" = 4' 6 7/16"

Horizontal → uniform → L=
$$(0.9*16,483/12 \cdot 10/(1.6*50plf))^{1/2} = 13.9'$$

concentrated →L = $0.9*16,483*5/(1.6*200\#) = 231'' = 19'-3''$
cantilevered →L = $16,483/(334\#) = 49.35'' = 4' \cdot 15/16''$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

Page 15 of 71

CRL GR 35 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.866 sq in I_{xx} : 1.02 in⁴ I_{yy} : 1.05 in⁴ r_{xx} : 1.086 in r_{yy} : 1.102 in C_{xx} : 1.769 in C_{yy} : 1.75 in S_{yy} : 0.583 in³ S_{xx} : 0.594 in³ or 0.607 in³ t = 0.0625"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

 $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*4.0*0.5*27.0} \times 10^3 \text{ ksi} = 42.2 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.70"/0.0625")² $M_n = 1.25 * S_e F_v = 1.25 * 0.594 * 30 \text{ ksi} = 22.27 \text{k}^{\circ}$ Vertical loading 1.25*0.583*30 ksi = 21.86k" Horizontal load Controls or $M_{ULT} = S_f F_{cr} = 0.607*42.2$ ksi = 25.615k" Vertical load 0.583*42.2 ksi = 24.603k" Horizontal load Controls Ultimate Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Horizontal \rightarrow uniform \rightarrow L= (21,860/12 • 10/(1.6*50plf))^{1/2} = 15.09' concentrated $\rightarrow L = 21,860*5/(334\#) = 327" = 37'3"$ cantilevered $L = 21,860/334 = 65.45^{\circ} = 5^{\circ} 57/16^{\circ}$ Ultimate strength Horizontal \rightarrow uniform \rightarrow $L = (24.603/12 \cdot 8/(1.6 \cdot 50plf))^{1/2} = 14.319'$ concentrated \rightarrow L = 24.603*4/(334#) = 294.65 cantilevered $L = 24,603/334 = 73.66^{\circ} = 6^{\circ} - 2^{\circ}/33^{\circ}$

GR 35 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*}4.0*0.49*16.9 \times 10^3 \text{ ksi}}{16.9 \times 10^3 \text{ ksi}} = 41.4 \text{ ksi but} \le F_y$ 12(1-0.34²)(1.70"/0.05")² $M_n = S_e F_v = 0.594*43$ ksi = 25.542 k" Vertical loading 0.583*43 ksi = 25.069 k" Horizontal load or $M_n = S_f F_{cr} = 0.607*41.4 \text{ ksi} = 25.130 \text{ k}$ " Vertical load Controls 0.583*41.4 ksi = 24.136 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*25,130/12 • 8/(1.6*50plf))^{1/2} = 13.729' concentrated \rightarrow L = 0.9*25,130*4/(334#) = 282.7" cantilevered $L = 0.9 \times 25,130/334 = 67.72'' = 5'7 11/16''$ Horizontal \rightarrow uniform \rightarrow L= (0.9*24,136/12 • 8/(1.6*50plf))^{1/2} = 13.454' concentrated $\rightarrow L = 0.9*24,136*4/(334\#) = 271.52"$

cantilevered $L = 0.9 \times 24,136/334 = 66.04'' = 5'6''$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 40 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.952 sq in I_{xx} : 1.553 in⁴ I_{yy} : 1.529 in⁴ r_{xx} : 1.277 in r_{yy} : 1.267 in C_{xx} : 2.131 in C_{yy} : 2.000 in S_{xx} : 0.729 in³ or 0.831 in³ S_{yy} : 0.765 in³ t = 0.0625"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

 $F_{cr} = \underline{\pi^2 k \eta E_0}$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 32.09 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.95"/0.0625")² $M_n = 1.25 * S_e F_v = 1.25 * 0.729 * 30 \text{ ksi} = 27.33 \text{k}^{\circ}$ Vertical loading 1.25*0.765*30 ksi = 28.687k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.831 \times 32.09 \text{ ksi} = 26.667 \text{k}$ " Vertical load Controls 0.765*32.09 ksi = 24.549k" Horizontal load Controls ultimate Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (26,667/12 • 10/(1.6*50plf))^{1/2} = 16.667' = 16' - 8" concentrated \rightarrow L = 26,667*5/(334#) = 399.21" L = 26.667/334 = 79.84" = 6'-7 13/16" cantilevered Horizontal \rightarrow uniform \rightarrow $L = (24,549/12 \cdot 10/(1.6*50plf))^{1/2} = 15.991' = 15'-117/8$ concentrated \rightarrow L = 24,549*5/(334#) = 367.5" $L = 24,549/334 = 73.5^{\circ} = 6' - 11/2^{\circ}$ cantilevered

GR 40 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*} 4.0* 0.49* 16.9 \times 10^{3} \text{ ksi}}{10^{3} \text{ ksi}} = 20.25 \text{ ksi but} \le F_{y}$ $12(1-0.34^2)(1.95^{"}/0.05^{"})^2$ $M_n = S_e F_v = 0.729*43 \text{ ksi} = 31,347 \text{ k}^{"}$ Vertical loading 0.765*43 ksi = 32,895 k" Horizontal load or $M_n = S_f F_{cr} = 0.831 * 20.25 \text{ ksi} = 16.83 \text{ k}$ " Vertical load Controls 0.765*20.25 ksi = 15.491 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*16,830/12•10/(1.6*50plf))^{1/2} =12.561' =10' -6 ³/₄" concentrated $\rightarrow L = 0.9*16,830*5/(334\#) = 226.75"$ cantilevered $L = 0.9*16,830/334 = 45.35'' = 3' - 9\frac{3}{8}''$ Horizontal \rightarrow uniform \rightarrow L= (0.9*15,491/12 • 10/(1.6*50plf))^{1/2} = 17.085' = 17'-1" concentrated \rightarrow L = 0.9*15,491*5/(334#) = 208.7" cantilevered $L = 0.9*15,491/334 = 41.74'' = 3'-5\frac{3}{4}''$

Connector Sleeves Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 207 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails. Use with 3/4 " glass balustrades

Area: 0.529 sq in I_{xx} : 0.141 in⁴ I_{yy} : 0.222 in⁴ r_{xx} : 0.516 in r_{yy} : 0.648 in C_{xx} : 0.929 in C_{yy} : 1.00 in S_{xx} : 0.152 in³ or 0.132 in³ S_{yy} : 0.221 in³ t = 0.05"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_v = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. (eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 135.2 \text{ ksi but} \le F_U$ $12(1-0.3^2)(0.95"/0.05")^2$ $M_n = 1.25S_eF_v = 1.25*0.132*30$ ksi = 4.95k" Vertical loading Controls 1.25*0.221*30 ksi = 8.287k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.152*75$ ksi = 11.4k" Vertical load **Controls** Ultimate 0.221*75 ksi = 16.575k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (4,950/12 • 10/(1.6*50plf))^{1/2} = 7.181' concentrated \rightarrow L = 4,950*5/(1.6*200#) = 77.34" = 6' 5 5/16" L = 4.950/334 = 15.47" cantilevered Ultimate Strength Vertical \rightarrow uniform \rightarrow L= (11,400/12 • 8/(1.6*50plf))^{1/2} = 9.75' = 9'-9" concentrated \rightarrow L = 11,400*4/(334#) = 136.53" cantilevered $L = 11,400/334 = 34.13'' = 2'-10 \frac{1}{8}''$ **Connector Sleeves and Corners**

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

No Brass option for GR 207

Page 20 of 71

CRL GR 257 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.634 sq in I_{xx} : 0.295 in⁴ I_{yy} : 0.402 in⁴ r_{xx} : 0.682 in r_{yy} : 0.796 in C_{xx} : 1.165 in C_{yy} : 1.25 in S_{xx} : 0.253 in³ or 0.221 in³ S_{yy} : 0.321 in³ t = 0.05" Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail.

(eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*4.0*0.5*27.0} \times 10^3 \text{ ksi} = 84.7 \text{ ksi but} \le F_U$ $12(1-0.3^2)(1.20"/0.05")^2$ $M_n = 1.25 S_e F_v = 1.25*0.221*30 \text{ ksi} = 8.287 \text{k}$ " Vertical loading Controls 1.25*0.321*30 ksi = 12.037k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.253*75$ ksi = 18.975k" Vertical load Controls ultimate 0.321*75 ksi = 24.075k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (8,287/12 • 10/(1.6*50plf))^{1/2} = 9.291' concentrated $\rightarrow L = 8,287*5/(334\#) = 124'' = 10'4''$ L = 8.287/334 = 24.81" cantilevered Ultimate Strength Vertical \rightarrow uniform \rightarrow L= (18,975/12 • 8/(1.6*50plf))^{1/2} = 12.57' = 12'-7" concentrated \rightarrow L = 18,975*4/(334#) = 227.25" L = 18.975/334 = 56.81'' = 4' 8 13/16''cantilevered

GR 257 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*}4.0*0.49*16.9 \times 10^3 \text{ ksi}}{16.9 \times 10^3 \text{ ksi}} = 53.5 \text{ ksi but} \le F_y$ $12(1-0.34^2)(1.20"/0.05")^2$ $M_n = S_e F_v = 0.253*43 \text{ ksi} = 10.879 \text{ k}^{"}$ Vertical loading Controls 0.321*43 ksi = 13.803 k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L=(0.9*10,879/12•10/(1.6*50plf))^{1/2}=10.099'=10'-1 3/16'' concentrated $\rightarrow L = 0.9*10,879*5/(334\#) = 146.57"$ cantilevered L = 0.9*10.879/334 = 29.315'' = 2' - 55/16''

Horizontal \rightarrow uniform \rightarrow L= (0.9*13,803/12•10/(1.6*50plf))^{1/2} = 11.376'= 11'-4.5" concentrated \rightarrow L = 0.9*13,803*5/(334#) = 185.97" cantilevered L = 0.9*13,803/334 = 37.19"

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

Page 22 of 71

CRL GR 307 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.743 sq in I_{xx} : 0.560 in⁴ I_{yy} : 0.677 in⁴ r_{xx} : 0.868 in r_{yy} : 0.955 in C_{xx} : 1.494 in C_{yy} : 1.500 in S_{xx} : 0.375 in³ or 0.372 in³ S_{yy} : 0.451 in³ t = 0.0625"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. $F_{cr} = \frac{\pi^2 k \eta E_0}{12(1-u^2)(w/t)^2}$ (eq 3.3.1.1-9)

 $12(1-\mu^2)(w/t)^2$ $\eta = 0.50$ (from table A6a) $k = 3(Is/Ia)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 61.44 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.45"/0.0625")² $M_n = 1.25S_eF_y = 1.25*0.372*30$ ksi = 13.95k" Vertical loading Controls 1.25*0.451*30 ksi = 16.912k" Horizontal load or $M_{ULT} = S_f F_{cr} = 0.375*61.44$ ksi = 23.04k" Vertical load Controls ultimate 0.451*61.44 ksi = 27.71k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load $L = (13,905/12 \cdot 10/(1.6*50plf))^{1/2} = 12.035'$ Vertical \rightarrow uniform \rightarrow concentrated \rightarrow L = 13,905*5/(334#) = 208" = 17' 4" Cantilevered L = 13,905/334 = 41.63" Ultimate strength Vertical \rightarrow uniform \rightarrow L= (23,040/12 • 8/(1.6*50plf))^{1/2} = 13.856' = 13'-10 ¼" concentrated \rightarrow L = 23,040*4/(334#) = 275.93" Cantilevered $L = 23,040/334 = 68.98^{\circ} = 5'-9^{\circ}$

GR 307 SERIES CAP RAIL For Brass: Alloy C26000, Cartridge Brass, 70% Cu, 30% Zn Cap rail fabricated from cold rolled sheet $F_{vu} \ge 43 \text{ ksi}$ $F_{cr} = \underline{\pi^2 k \eta E_0}$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.34$ $E_0 = 16.9 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*}4.0*0.49*16.9 \times 10^{3} \text{ ksi}}{\pi^{2*}4.0*0.49*16.9 \times 10^{3} \text{ ksi}} = 36.628 \text{ ksi but} \le F_y$ $12(1-0.34^2)(1.45^{"}/0.05^{"})^2$ $M_n = S_e F_v = 0.372*43$ ksi = 15.996 k" Vertical loading 0.451*43 ksi = 19.393 k" Horizontal load or $M_n = S_f F_{cr} = 0.375*36.628$ ksi = 13.736 k" Vertical load Controls 0.451*36.628 ksi = 16.519 k" Horizontal load Controls Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (0.9*13,736/12•10/(1.6*50plf))^{1/2}=11.348'=11'-4 3/16" concentrated $\rightarrow L = 0.9*13,736*5/(334\#) = 185.07"$ cantilevered L = 0.9*13,736/334 = 37.0" 3' -1" Horizontal \rightarrow uniform \rightarrow L= (0.9*16,519/12•10/(1.6*50plf))^{1/2} = 12.444' = 12'-5 $\frac{1}{3}$ " concentrated $\rightarrow L = 0.9*16,519*5/(334\#) = 222.56"$ cantilevered L = 0.9*16.519/334 = 44.51'' = 3' 8 1/2''

Connector Sleeves

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

ALUMINUM CAP RAILS

Aluminum cap rail strength evaluated in accordance with the 2005 *Aluminum Design Manual*, Part I-A. Allowable Stress Design

GR19 Aluminum

Area: 0.966 sq in I_{xx} : 0.242 in⁴ I_{yy} : 0.328 in⁴ r_{xx} : 0.501 in r_{yy} : 0.583 in C_{xx} : 0.948 in C_{yy} : 0.950 in S_{xx} : 0.255 in³ or 0.254 in³ S_{yy} : 0.345 in³ t = 0.125"

Allowable stresses ADM Table

ADM Table 2-24 6063-T6 Aluminum

$$F_{Cb} \rightarrow R_b/t = \frac{1.9"}{0.125} = 15.2$$
 line 16.1

$$\begin{split} F_{Cb} &= 18.5 - 0.593(15.2)^{1/2} = 16.18 \text{ ksi} \\ M_{all \text{ horiz}} &= 16.18^{ksi} \bullet (0.345) = 5,582^{\#"} \end{split}$$

For vertical load \rightarrow bottom in tension top comp. $F_b = 18 \text{ ksi}$ bottom stress: $M_{all vert} = (0.254 \text{ in}^3) \cdot 18 \text{ ksi} = 4,572^{"\#} \text{ or}$ top stress: $= (0.255 \text{ in}^3) \cdot 16.45 \text{ ksi} = 4,195^{"\#} \text{ controls}$

Vertical load will determine maximum allowable span max span 50 plf horizontal load or 200 lb concentrated load $S = [4,195"#*8/(50plf*12"')]^{1/2} = 7.48$ ' or S = 4,195"#*4/200# = 83.9 inches = 7' Controls For cantilevered case: $S_C = 4,195/200 = 20.975$ "

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

GR25 Aluminum

Area: 1.206 sq in I_{xx}: 0.622 in⁴ I_{vv}: 0.712 in⁴ r_{xx}: 0.718 in r_{vv}: 0.768 in Cxx: 1.269 in C_{vv}: 1.25 in Sxx: 0.490 in³ or 0.505 in³ Syy: 0.569 in³ t = 0.125"

Allowable stresses ADM Table 2-24 6063-T6 Aluminum

 $F_{Cb} \rightarrow R_b/t = 2.5^{"} = 20$ line 16.1 0.125

 $F_{Cb} = 18.5 - 0.593(20)^{1/2} = 15.84$ ksi $M_{\text{all horiz}} = 15.84^{\text{ksi}} \bullet (0.569) = 9,013^{\#"}$

For vertical load \rightarrow bottom in tension top comp. $F_b = 18 \text{ ksi}$ bottom stress: $M_{all vert} = (0.490in^3) \cdot 18 \text{ ksi} = 8,820^{"\#} \text{ or}$ $=(0.505in^3)*15.84$ ksi $= 7.999^{"\#}$ controls top stress:

Vertical load will determine maximum allowable span max span 50 plf horizontal load or 200 lb concentrated load $S = [7,999"#*8/(50plf*12"')]^{1/2} = 10.32$ or $S = 7.999^{*} + 4/200^{\#} = 160$ inches = 13' 4" For cantilevered case:

 $S_C = 7,999/200 = 40$ "

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

GR30 Aluminum

Area: 1.407 sq in I_{xx} : 1.160 in⁴ I_{yy} : 1.222 in⁴ r_{xx} : 0.908 in r_{yy} : 0.932 in C_{xx} : 1.569 in C_{yy} : 1.50 in S_{xx} : 0.740 in³ or 0.811 in³ S_{yy} : 0.815 in³ t = 0.125"

Allowable stresses ADM Table 2-24 6063-T6 Aluminum

 $F_{Cb} \rightarrow R_b/t = \frac{3"}{0.125} = 24$ line 16.1

$$\begin{split} F_{Cb} &= 18.5 - 0.593(24)^{1/2} = 15.59 \text{ ksi} \\ M_{all \text{ horiz}} &= 15.59^{\text{ksi}} \bullet (0.815) = 12,710^{\#"} \end{split}$$

For vertical load \rightarrow bottom in tension top comp.

 $F_b = 18 \text{ ksi}$ bottom stress: $M_{all vert} = (0.740 \text{ in}^3) \cdot 18 \text{ ksi} = 13,320$ "# or top stress: $= (0.811 \text{ in}^3) \cdot 15.59 \text{ ksi} = 12,643$ "# controls

Vertical load will determine maximum allowable span max span 50 plf horizontal load or 200 lb concentrated load $S = [12,643"#*8/(50plf*12"')]^{1/2} = 12.98$ or S = 12,643"#*4/200# = 253 inches = 21' 1"

For cantilevered case:

 $S_C = 12,643/200 = 63.215$ "

bottom stress: $M_{all vert} = (1.046in^3) \cdot 18 \text{ ksi} = 18,828''^{\#}$ or top stress: $=(1.181in^3)*15.36 \text{ ksi} = 18,140''^{\#}$

Horizontal load will determine maximum allowable span max span 50 plf horizontal load or 200 lb concentrated load $S = [17,067"#*8/(50plf*12"')]^{1/2} = 15.08$ ' or S = 17,067"#*4/200# = 341 inches = 28' 5" For cantilevered case: $S_C = 17,067/200 = 85.335$ "

GROV4 Aluminum

Area: 1.466 sq in I_{xx} : 0.950 in⁴ I_{yy} : 2.078 in⁴ r_{xx} : 0.805 in r_{yy} : 1.190 in C_{xx} : 1.286 in C_{yy} : 2.00 in S_{xx} : 0.739 in³ or 0.783 in³ S_{yy} : 1.039 in³ t = 0.125"

Allowable stresses ADM Table 2-24 6063-T6 Aluminum

 $F_{Cb} \rightarrow R_b/t = \frac{2.5"}{0.125} = 20$ horizontal load or 4/0.125 = 32 for vertical loads 0.125

line 16.1

$$\begin{split} F_{Cb} &= 18.5 - 0.593(20)^{1/2} = 15.84 \ ksi \\ M_{all \ horiz} &= 15.84^{ksi} \bullet (1.039) = 15,\!245^{\#"} \end{split}$$

 $F_{Cb} = 18.5 - 0.593(32)^{1/2} = 15.14$ ksi

For vertical load \rightarrow bottom in tension top comp.

 $F_{b} = 18 \text{ ksi}$ bottom stress: $M_{all vert} = (0.739 \text{in}^{3}) \cdot 18 \text{ ksi} = 13,302"^{\#} \text{ or}$ top stress: $= (0.783 \text{in}^{3})^{*} 15.14 \text{ ksi} = 11,855"^{\#}$

Vertical load will determine maximum allowable span

max span 50 plf horizontal load or 200 lb concentrated load $S = [11,855"#*8/(50plf*12"')]^{1/2} = 12.57" \text{ or}$ S = 11,855"#*4/200# = 237 inches = 19"9"For cantilevered case: $S_{C} = 11,885/200 = 59.425"$

Sleeve connectors and corners can be inferred from calculations for GR15 rails.

GR307M Aluminum

Area: 1.412 sq in I_{xx} : 1.078 in⁴ I_{yy} : 1.258 in⁴ r_{xx} : 0.874 in r_{yy} : 0.944 in C_{xx} : 1.520 in C_{yy} : 1.500 in S_{xx} : 0.709 in³ or 0.782 in³ S_{yy} : 0.839 in³ t = 0.125"

Allowable stresses ADM Table 2-24 6063-T6 Aluminum

 $F_{Cb} \rightarrow R_b/t = \frac{1.5"}{0.125} = 12$ line 16.1 $F_{Cb} = 18.5 - 0.593(20)^{1/2} = 16.45$ ksi

 $M_{all\ horiz} = 16.54^{ksi} \bullet (0.839) = 13,877^{\#"}$

For vertical load \rightarrow bottom in tension top comp.

$$\begin{split} F_{bt} &= 18 \text{ ksi} \\ \text{bottom stress: } M_{all \text{ vert}} &= (0.709 \text{in}^3) \bullet 18 \text{ ksi} = 12,762"^{\#} \text{ or} \\ \text{top stress: } &= (0.782 \text{in}^3)*16.45 \text{ ksi} = 12,864"^{\#} \end{split}$$

Vertical load controls span:

max span 50 plf horizontal load or 200 lb concentrated load $S = [12,762"^{\#*}10/(50plf^{*}12"')]^{1/2} = 14.584' \text{ or}$ $S = 12,762"^{\#*}5/200^{\#} = 319 \text{ inches}$ For cantilevered case: $S_{C} = 12,762/200 = 63.81"$

Sleeve connectors and corners can be inferred from calculations for GR15 rails.

Welded Aluminum Corners and Splices:

When the 6063-T6 aluminum alloy is welded the tempering is lost within the area of the weld affected zone reducing the allowable stress in the tubes to 5.5 ksi within 1" of the weld. This reduces bending strength to 30% of the bending strength for the unaffected cap rail.

All welds shall be located as close as possible to a zero moment inflection point or at a location where the weld may be assumed to behave as a hinge without causing an unstable condition.

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

Stabilizing End Cap

Used to attach cap rail or hand rail to wall or post to provide one anchor point.

End cap sized to match rail: 1/8" (3.2 mm) Maximum design load to End Cap: 200# concentrated load For distributed load = $50 \text{ plf}^* \text{ light size}/2$ R = 10'*50plf/2 = 250#(from broken end light) (250# maximum) TITITITITITITI Cap thickness is 1/8" Anchor size is 1/4" Bearing pressure on end cap: $F_B = 250 \# / (0.25 * 0.125) = 8,000 \text{ psi}$ This is significantly below the allowable bearing stresses for all material types used: 304 SS = 2*0.65*75 ksi/1.6 = 60.92 ksi 6063 T6 AL = 31 ksi Brass = 2*0.65*43ksi/1.6 = 34.9 ksi

Anchor strength: 1/4" wood screw to wood, G >0.42 Use wood screw style - ANSI B18.6.1 rolled thread. $Z' = Z^*C_d = 151\#*1.33 = 200\#$, NDS Table 11M - 11 gage edge plate and #14 screw To wood requires maximum light size of 8' $R = 50plf^*8'/2 = 200\#$ (200# load to end cap)

To Concrete or CMU: 1/4" Wedge-Bolt® screw in anchor V = 260# (ESR-1678) 2,000 psi concrete STABILIZING END CAP MATCHED TO TOP RAIL OR HAND RAIL

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

7/8" (22.2 mm)

3/4" (19 mm)

Composite rail made of select clear wood bonded with aluminum channel.

Determine equivalent section:

 $n = E_a/E_w$ n = 10,100/1,400 = 7.2for aluminum channel thickness = 0.1" equivalent wood = 7.2*2*0.1 = 1.44" maxim notch width = 0.75"+2*0.1 = 0.95" < 1.44" therefore can assume that section is equivalent to a solid round. Wood stress from National Design Specification for Wood Construction Supplement, 2001 edition, mixed oak $F'_b = F_b * C_D * C_F * C_S = 1150 \text{ psi} * 1.33 * 1.5 * 1.18 = 2,707 \text{ psi}$ Three rail sizes: 2" dia: $S = \pi 2^3/32 = 0.786 \text{ in}^3$ $M_a = 0.786 * 2,707 \text{ psi} = 2,128 \#$ " max span 50 plf horizontal load or 200 lb concentrated load $S = [2,128^{\#*}8/(50plf^{*}12^{"'})]^{1/2} = 5.33^{"} = 5^{"}-4^{"}or$ $S = 2.128^{*} + 4/200^{\#} = 42.56^{*}$ inches = 3'-6" For cantilevered case: $S_C = 2,128/200 = 10.64$ " 2.5" dia: $S = \pi 2.5^3/32 = 1.534$ in³ M_a = 1.534*2,707 psi = 4,153#" max span 50 plf horizontal load or 200 lb concentrated load $S = [4,153"#*8/(50plf*12")]^{1/2} = 7.44" = 7"5" or$ $S = 4.153^{\#} 4/200^{\#} = 83^{\#}$ inches = 6'-11" For cantilevered case: $S_C = 4,153/200 = 20.765$ " 3.0" dia: $S = \pi 3^3/32 = 2.65 \text{ in}^3$ M_a = 2.65*2,707 psi = 7,174#" max span 50 plf horizontal load or 200 lb concentrated load $S = [7,174" * 8/(50plf * 12")]^{1/2} = 9.78' = 9'9 1/4"$ or S = 7,174"#*4/200# = 143.5" inches = 11'-11.5" For cantilevered case: $S_C = 7,174/200 = 35.87$ "

> EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Page 32 of 71

Square Stainless Steel Cap Rails **GRS15/GRSC15 CAP RAIL** Area: 0.4009 sq in 1.500 Perim: 15.2514 in Ixx: 0.0961 in⁴ I_{yy}: 0.1518 in⁴ rxx: 0.4895 in 50 r_{vv}: 0.5360 in Cxx: 0.77125 in C_{vv}: 0.7500 in S_{xx}: 0.1246 in³ or 0.1319 in³ Svv: 0.1534 in³ 633 t = 0.05 in Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_v = 30$ ksi, $F_u = 75$ ksi, for A304 stainless steel sheet used to form the rail. $\phi =$ 1.0. Ultimate strength not calculated because of shape. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.0961/0.1518)^{1/3} + 1 = 3.58 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.58*0.5*27.0} \times 10^3 \text{ ksi} = 54.6 \text{ ksi but} \le F_v$ 12(1-0.32)(1.40"/0.05")2 Use reserve capacity method $(1.25*30 = 37.5 \text{ksi} \le 54.6 \text{ ksi})$ okay $M_n = 1.25 * S_e F_v = 1.25 * 0.1246 * 30 \text{ ksi} = 4,672.5$ "# Vertical loading Controls $M_{nH} = 1.25*0.1534*30$ ksi = 5,752.5"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (4,672.5/12*10/(1.6*50plf))^{1/2} = 6.977' = 6' -11 11/16" concentrated \rightarrow L = 4,672.5*5/(1.6*200#) = 73.0" = 6' -1" Horizontal \rightarrow uniform \rightarrow L= (5,752.5/12*10/(1.6*50plf))^{1/2} = 7.740' = 7' - 7/8" concentrated \rightarrow L = 5.752.5*5/(1.6*200#) = 89.89" Cantilevered section: For 200# concentrated load: L = 4,672.5/(1.6*200) = 14.6'' = 1'-2.9/16

GRS20/ GRSC20 CAP RAIL

Area: 0.5504 sq in 2.000 Perim: 21.2518 in Ixx: 0.2519 in⁴ Ivv: 0.2726 in4 r_{xx}: 0.6766 in r_{yy}: 0.7038 in 2.000 Cxx: 1.0322 in C_{vv}: 1.000 in 20 S_{xx}: 0.2441 in³ or 0.2603 in³ .750 Svv: 0.2726 in³ t = 0.05 in Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_u = 75$ ksi, for A304 stainless steel sheet used to form the rail. $\phi =$ 1.0. Ultimate strength not calculated because of shape. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.2519/0.2726)^{1/3} + 1 = 3.58 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.58*0.5*27.0 \text{ x}10^3 \text{ ksi}} = 54.6 \text{ ksi but} \le F_y$ $12(1-0.3^2)(1.90''/0.05'')^2$ Use reserve capacity method $(1.25*30 = 37.5 \text{ksi} \le 54.6 \text{ ksi})$ okay $M_n = 1.25 * S_e F_y = 1.25 * 0.2519 * 30 \text{ ksi} = 9,446$ "# Vertical loading Controls $M_{nH} = 1.25*0.2726*30$ ksi = 10,222.5"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (9,446/12*10/(1.6*50plf))^{1/2} = 9.919' = 9'-11'' concentrated $\rightarrow L = 9,446*5/(1.6*200\#) = 165.0"$ Horizontal \rightarrow uniform \rightarrow L= (10,222.5/12*10/(1.6*50plf))^{1/2} = 10.320' = 10' - 37/8" concentrated \rightarrow L = 10,222.5*5/(1.6*200#) = 178.58" Cantilevered section: For 200# concentrated load:

 $L = 9,446'' \# / (1.6*200) = 29.52'' = 2' - 5 \frac{1}{2}''$

GRS25 CAP RAIL 2.5000 Area: 0.6516 sq in Perim: 25.257 in I_{xx}: 0.4946 in⁴ Ivv: 0.5141 in⁴ rxx: 0.8712 in 5000 r_{yy}: 0.8883 in Cxx: 1.2864 in C_{vv}: 1.250 in Sxx: 0.3825 in³ or 0.4075 in³ S_{vv}: 0.4113 in³ t = 0.05 in Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_u = 75$ ksi, for A304 stainless steel sheet used to form the rail. $\phi =$ 1.0. Ultimate strength not calculated because of shape. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.50$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.4946/0.5141)^{1/3} + 1 = 3.96 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \frac{\pi^{2*} 3.96* 0.5* 27.0 \text{ x} 10^3 \text{ ksi}}{27.0 \text{ x} 10^3 \text{ ksi}} = 20.97 \text{ ksi but} \le F_y$ 12(1-0.3²)(2.40"/0.05")² Check reserve capacity method Check based on compression distortions permitted: $f_b = 1.2*20.97$ ksi = 25,164 psi $M_n = S_e f_b = 0.3825 \times 25,164 \text{ psi} = 9,625$ "# Vertical loading Controls $M_{nH} = 0.4113 \times 25,164 \text{ psi} = 10,350$ "# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (9,625/12*10/(1.6*50plf))^{1/2} = 10.013' = 10' - 1/8" concentrated $\rightarrow L = 9.625 \times 5/(1.6 \times 200 \#) = 150.39$ " Horizontal \rightarrow uniform \rightarrow L= (10,350/12*10/(1.6*50plf))^{1/2} = 10.383' = 10' - 4 5/8" concentrated \rightarrow L = 10.350*5/(1.6*200#) = 161.72" Cantilevered section:

For 200# concentrated load:

L = 9,625'' # / (1.6*200) = 30.08'' = 2' - 6''

315

SRF15 CAP RAIL 1.6" Area: 0.366 sq in 1.378 Ixx: 0.09363 in⁴ I_{vv}: 0.1299 in⁴ 583 1.039 8366" rxx: 0.5058 in rvv: 0.5958 in S 5 Cxx: 0.843 in Cvv: 0.7875 in S_{xx}: 0.1111 in³ Bottom or 0.12799 in³ Top S_{vv}: 0.1554 in³ t = 0.053 in .047 Allowable stresses: ∦ For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_v = 30$ ksi, $F_u = 75$ ksi, for A304 stainless steel sheet used to form the rail. $\phi = 1.0$. Ultimate strength not calculated because of shape. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_a/I_a)^{1/3} + 1 = 3(0.09363/0.1299)^{1/3} + 1 = 3.69 \le$ 4.0 $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.69*0.5*27.0} \times 10^3 \text{ ksi} = 52.96 \text{ ksi but} \le F_v$ 12(1-0.32)(1.385"/0.0475")2 Use reserve capacity method $(1.25*30 = 37.5 \text{ksi} \le 54.6 \text{ ksi})$ okay $M_n = 1.25 * S_e F_v = 1.25 * 0.1111 * 30 \text{ ksi} = 4,166$ "# Vertical loading Controls $M_{nH} = 1.25*0.1554*30$ ksi = 5,828"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (4,166/12*10/(1.6*50plf))^{1/2} = 6.5876' = 6' -7" concentrated \rightarrow L = 4,166*5/(1.6*200#) = 65.09" = 5'-5" Horizontal \rightarrow uniform \rightarrow L= (5,828/12*10/(1.6*50plf))^{1/2} = 7.7916' = 7' - 9 1/2" concentrated \rightarrow L = 5,828*5/(1.6*200#) = 91.06"

Cantilevered section:

For 200# concentrated horizontal load:

L = 5,828/(1.6*200) = 18.2" = 1'-6 3/16"

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

SRF20 CAP RAIL

2.0000 Area: 0.5074 sq in I_{xx}: 0.2201 in⁴ I_{yy}: 0.2870 in⁴ r_{xx}: 0.6587 in ryy: 0.7521 in 746 C_{xx} : 1.063 in from bottom C_{vv}: 1.0 in S_{xx}: 0.2071 in³ or 0.2349 in³ Syy: 0.2870 in³ 2.0000 t = 0.047 in Allowable stresses: For stainless steel options: design using SEI/ **ASCE 8-02** From Table A1, $F_v = 30$ ksi, $F_u = 75$ ksi, for A304 stainless steel sheet used to form the rail. $\phi = 1.0$. Ultimate strength not calculated 1.140 .430 because of shape. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.2201/0.2870)^{1/3} + 1 = 3.75 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.75*0.5*27.0 \text{ x}10^3 \text{ ksi}} = 28.9 \text{ ksi but} \le F_y$ 12(1-0.32)(1.87"/0.047")2 $M_n = S_e F_{cr} = 0.2071 * 28.9 \text{ ksi} = 5,985$ "# Vertical loading Controls $M_{nH} = 0.287 \times 28.9 \text{ ksi} = 8,294$ "# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (5,985/12*10/(1.6*50plf))^{1/2} = 7.896' concentrated $\rightarrow L = 5,985*5/(1.6*200\#) = 93.5" = 7' - 9.5"$ Horizontal \rightarrow uniform \rightarrow L= (8,294/12*10/(1.6*50plf))^{1/2} = 9.295' concentrated \rightarrow L = 8,294*5/(1.6*200#) = 129.59" Cantilevered section horizontal load For 200# concentrated load:

L = 5,985/(1.6*200) = 18.7" For vertical load: L = 8,294/(1.6*200) = 25.9"

GRLC10 CAP RAIL Area: 0.404 sq in Perim: 7.231 in I_{xx}: 0.06997 in⁴ Ivv: 0.06530 in4 R 1/16" 1" (25.4 mm) r_{xx}: 0.4162 in (R 1.58 mm) r_{yy}: 0.4021 in C_{xx}: 0.7875 in 1-5/16" C_{vv}: 0.50 in (33.3 mm) Sxx: 0.08885 in³ or 0.13328 in³ S_{vv}: 0.13059 in³ t = 0.1177 in (11 ga) 3/4 (19 mm) Allowable stresses: $F_v = 48 \text{ ksi}, F_u = 94 \text{ ksi}, \text{ for A 304 stainless steel sheet}$ mill certification, used to form the rail. $\phi = 1.0$ Ultimate strength not calculated because of shape. (eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ (from SEI/ASCE 8-02 table A8a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.06997/0.06530)^{1/3} + 1 = 4.08 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*4.0*0.49*27.0 \text{ x}10^3 \text{ ksi}} = 464 \text{ ksi but} \le F_y$ 12(1-0.32)(1.1948"/0.1177")2 Use reserve capacity method $M_n = 1.25 * S_e F_v = 1.25 * 0.08885 * 48 \text{ ksi} = 5,331$ "# Vertical loading Controls $M_{nH} = 1.25*0.13059*48$ ksi = 7,835"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (5,331/12*10/(1.6*50plf))^{1/2} = 7.452' = 7'-5 7/16" concentrated $\rightarrow L = 5,331*5/(1.6*200\#) = 83.3" = 6'-11\frac{1}{4}"$ Horizontal \rightarrow uniform \rightarrow L= (7,835/12*10/(1.6*50plf))^{1/2} = 9.034' = 9' - 3/8'' concentrated $\rightarrow L = 7.835*5/(1.6*200\#) = 122.42"$ Cantilevered section: For 200# concentrated load:

 $L = 7,835'' \# / (1.6*200) = 24.48'' = 2' - \frac{1}{2}''$

GRL10 CAP RAIL 1.00 Area: 0.3949 sq in I_{xx}: 0.06763 in⁴ I_{vv}: 0.06324 in⁴ 3125 r_{xx}: 0.4139 in r_{vv}: 0.4002 in Cxx: 0.7760 in 0.76 C_{vv}: 0.50 in S_{xx}: 0.08716 in³ or 0.12606 in³ Syy: 0.1265 in³ t = 0.1177 in (11 ga) Allowable stresses: $F_v = 48 \text{ ksi}, F_u = 94 \text{ ksi}, \text{ for A304 stainless steel sheet mill certification, used to form the rail. } \phi =$ 1.0 Ultimate strength not calculated because of shape. (eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ (from SEI/ASCE 8-02 table A8a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.06763/0.06324)^{1/3} + 1 = 4.07 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*}4.0*0.49*27.0 \text{ x}10^3 \text{ ksi} = 464 \text{ ksi but} \le F_y$ 12(1-0.3²)(1.1198"/0.1177")² Use reserve capacity method $M_n = 1.25 \text{*}S_eF_v = 1.25 \text{*}0.08716 \text{*}48 \text{ ksi} = 5,230$ "# Vertical loading Controls $M_{nH} = 1.25*0.1265*48$ ksi = 7,590"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (5,230/12*10/(1.6*50plf))^{1/2} = 7.381' = 7'-4 7/16" concentrated \rightarrow L = 5.230*5/(1.6*200#) = 81.72" = 6' -9 11/16" Horizontal \rightarrow uniform \rightarrow L= (7,590/12*10/(1.6*50plf))^{1/2} = 8.892' = 9' - 10 11/16" concentrated $\rightarrow L = 7.590 \times 5/(1.6 \times 200 \#) = 118.59$ " Cantilevered section: For 200# concentrated load:

L = 7,590"#/(1.6*200) = 23.72" = 1'- 11 11/16"

GRL107/GRLC107 CAP RAIL R 1/4" (R 6.3 mm) 1 1/4" x 1 5/16" x 11 Ga Area: 0.4463 sq in 1-1/4" (31.7 mm) Ixx: 0.07768 in4 Ivv: 0.1122 in⁴ r_{xx}: 0.417 in 1-5/16" (33.3 mm) r_{vv}: 0.501 in S_{xx}: 0.0957 in³ Svy: 0.1793 in³ (25.4 mm) Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 45$ ksi for 1/16 hard A304 stainless steel sheet used to form the rail. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ (from table A8a) $k = 3(Is/Ia)^{1/3} + 1 < 4.0 = 3(0.07768/0.1122)^{1/3} + 1 = 3.6547$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.6547*0.49*27.0 \text{ x}10^3 \text{ ksi}} = 650 \text{ ksi but} \le F_y$ 12(1-0.3²)(1.0625"/0.125")² $M_n = S_e F_v = 0.0957*45 \text{ ksi} = 4,307 \text{ k}$ " Vertical loading 0.1793*45 ksi = 8.069 k" Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or 200 lb concentrated load rail continuous one end Vertical \rightarrow uniform \rightarrow L= (4,307#"/12 • 10/(1.6*50plf))^{1/2} = 6.698" concentrated $\rightarrow L = 4,307*(16/3)/(1.6*200\#) = 71.78"$ cantilevered $\rightarrow L = 4.307 * / (1.6 * 200 \#) = 13.46$ " \rightarrow L = (4,307#"/12 • 2/(1.6*50plf))^{1/2} = 2.995' uniform \rightarrow L= (8,069#"/12 • 10/(1.6*50plf))^{1/2} = 9.168' controls Horizontal \rightarrow concentrated $\rightarrow L = 8,069*(16/3)/(1.6*200\#) = 134.48"$ cantilevered $\rightarrow L = 8.069^{*}/(1.6^{*}200^{\#}) = 25.2^{"}$ \rightarrow L = 8,069/12 • 2/(1.6*50plf))^{1/2} = 4.100'

L10 CAP RAIL

7/16' Area: 0.4653 sq in I_{xx} : 0.09776 in⁴; I_{yy} : 0.1572 in⁴ r_{vy}: 0.5813 in r_{xx}: 0.4584 in ; C_{xx}: 0.7185 in ; C_{vv}: 0.890 in S_{xx}: 0.1098 in³ or 0.1787 in³ Svy: 0.209 in3 t = 0.1177 in (11 ga) Allowable stresses: $F_v \ge 45 \text{ ksi}, F_u \Longrightarrow 90 \text{ ksi}$, for A304 stainless steel sheet mill certification, used to form the rail. $\phi = 1.0$ Ultimate strength not calculated because of shape. (eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.49$ (from SEI/ASCE 8-02 table A8a) $k = 3(I_s/I_a)^{1/3} + 1 = 3(0.1572/0.09776)^{1/3} + 1 = 3.51 \le 4.0$ $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ ksi}$ $F_{cr} = \pi^{2*3.51*0.49*27.0 \times 10^3 \text{ ksi}} = 412 \text{ ksi but} \le F_y$ 12(1-0.3²)(1.188"/0.1177")² Use reserve capacity method $M_n = 1.25 \text{*}S_eF_v = 1.25 \text{*}0.08716 \text{*}48 \text{ ksi} = 5,230$ "# Vertical loading Controls $M_{nH} = 1.25*0.1265*48$ ksi = 7,590"# Horizontal load Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L= (5,230/12*10/(1.6*50plf))^{1/2} = 7.381' = 7'-47/16" concentrated \rightarrow L = 5,230*5/(1.6*200#) = 81.72" = 6' -9 11/16" Horizontal \rightarrow uniform \rightarrow L= (7,590/12*10/(1.6*50plf))^{1/2} = 8.892' = 9' - 10 11/16''

concentrated $\rightarrow L = 7,590*5/(1.6*200\#) = 118.59"$

Cantilevered section:

For 200# concentrated load:

L = 7,590"#/(1.6*200) = 23.72" = 1'- 11 11/16"

CRL GRRF15 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails. Area: 0.269 sq in I_{xx} : 0.03726 in⁴ I_{yy} : 0.07091 in⁴ r_{xx} : 0.3721 in r_{yy} : 0.5134 in C_{xx} : 0.731 in C_{yy} : 0.75 in S_{xx} : 0.05176 in³ or 0.0677 in³ S_{yy} : 0.08538 in³ t = 0.053"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. $F_{cr} = \frac{\pi^2 k \eta E_0}{12(1-\mu^2)(w/t)^2}$ (eq 3.3.1.1-9) $\eta = 0.5$ (from table A6a)

 $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \times 10^3$ psi

 $F_{cr} = \pi^{2*4.0*0.5*27.0 \text{ x}10^3 \text{ ksi}} = 216 \text{ ksi but} \le F_U$

 $12(1-0.3^2)(0.75''/0.05'')^2$

 $M_n = 1.25S_eF_y = 1.25*0.05176*30 \text{ ksi} = 1,941''#$ Vertical loading Controls 1.25*0.08538*30 ksi = 3,202''# Horizontal load

or $M_{ULT} = S_f F_{cr} = 0.05176*75$ ksi = 3,882"# Vertical load 0.08538*75 ksi = 6,404"# Horizontal load

Determine allowable rail spans (ignoring deflection)

```
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform \rightarrow L= (1,941/12 • 10/(1.6*50plf))<sup>1/2</sup> = 6.1509'
concentrated \rightarrowL = 1,941*5/(1.6*200#) = 56.75" = 4' 8 3/4"
cantilevered L = 1,941/(1.6*200) = 6 1/16"
```

Ultimate Strength

```
Vertical → uniform → L= (3,882/12 \cdot 8/(1.6*50plf))^{1/2} = 5.688' = 5' - 8 1/4''
concentrated →L = 3,882*4/(320\#) = 48.5'' = 4' \cdot 0 1/2''
cantilevered L = 3,882/320 = 12 \cdot 1/8''
```

Connector Sleeves and Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

Page 43 of 71

CRL GRRF20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails.

Area: 0.3765 sq in I_{xx} : 0.0909 in⁴ I_{yy} : 0.1509 in⁴ r_{xx} : 0.4914 in r_{yy} : 0.6332 in C_{xx} : 0.949 in C_{yy} : 0.9375 in S_{xx} : 0.09689 in³ or 0.123 in³ S_{yy} : 0.123 in³ t = 0.053"

Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $F_y = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. (eq 3.3.1.1-9) $F_{cr} = \pi^2 k \eta E_0$ $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 135.2 \text{ ksi but} \le F_U$ $12(1-0.3^2)(0.95"/0.05")^2$ $M_n = 1.25S_eF_v = 1.25*0.09689*30$ ksi = 3.632"# Vertical loading Controls 1.25*0.123*30 ksi = 4,613"# Horizontal load or $M_{ULT} = S_f F_{cr} = 0.09689 * 75 \text{ ksi} = 7,267$ "# Vertical load **Controls Ultimate** 0.123*75 ksi = 9,225"# Horizontal load Determine allowable rail spans (ignoring deflection) Live loads: 50 plf uniform or concentrated load Vertical → uniform → L= $(3,632/12 \cdot 10/(1.6*50plf))^{1/2} = 6.1509'$ concentrated \rightarrow L = 3,632*5/(1.6*200#) = 56.75" = 4' 8 3/4" L = 3.632/(1.6*200) = 11.35" cantilevered Ultimate Strength Vertical \rightarrow uniform \rightarrow L= (7,267/12 • 8/(1.6*50plf))^{1/2} = 7.782' = 7'-9 3/8" concentrated $\rightarrow L = 7,267*4/(334\#) = 87.0"$ L = 7,267/334 = 21.76" cantilevered **Connector Sleeves and Corners**

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL LR20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails.

Area: 0.4193 sq in Ixx: 0.09118 in⁴ I_{vv}: 0.1915 in⁴ 1.579 r_{xx}: 0.4663 in r_{yy}: 0.6757 in 1.204 C_{xx} : 1.0 in C_{yy} : 0.791 in (from bottom) S_{xx}: 0.1154 in³ or 0.1157 in³ S_{vv}: 0.1915 in³ t = 0.053" Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02, From Table A1, $F_v = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 137.1 \text{ ksi but} \le F_U$ 12(1-0.3²)(1"/0.053")² $M_n = 1.25S_eF_v = 1.25*0.1154*30$ ksi = 4,328"# Vertical loading Controls 1.25*0.1915*30 ksi = 7,181"# Horizontal load or $M_{ULT} = S_f F_{cr} = 0.1154*75$ ksi = 8,655"# Vertical load **Controls** Ultimate 0.1915*75 ksi = 14,363"# Horizontal load Determine allowable rail spans (ignoring deflection) spans 2 lights minimum Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (4,328/12 • 10/(1.6*50plf))^{1/2} = 6.714' concentrated \rightarrow L = 4,328*5/(1.6*200#) = 67.625 L = 4,328/(1.6*200) = 13.5" cantilevered Ultimate Strength

Vertical \rightarrow uniform \rightarrow L= (8,655/12 • 10/(1.6*50plf))^{1/2} = 9.495' concentrated $\rightarrow L = 8,655*4/(334\#) = 103.65"$ cantilevered L = 8,655/334 = 25.91"

For laminated glass end light length based on horizontal strength Cantilevered end

Vertical \rightarrow uniform \rightarrow L= (14,363/12 • 2/(1.6*50plf))^{1/2} = 5.47' concentrated \rightarrow L = 14,363/(334#) = 43.0"

Page 45 of 71

CRL LR25 SERIES CAP RAIL 2.500 Used as the top rail on glass balustrade panel guardrails. Area: 0.65177 sq in I_{xx}: 0.2250 in⁴ I_{yy}: 0.4484 in⁴ 1.994 r_{xx}: 0.5875 in r_{yy}: 0.8295 in C_{xx} : 1.25 in C_{yy} : 0.986 in (from bottom) 1.345 S_{xx}: 0.2282 in³ or 0.2232 in³ S_{vv}: 0.3587 in³ t = 0.053" Allowable stresses: For stainless steel options: design using SEI/ASCE 8-02, From Table A1, $F_v = 30$ ksi, $F_U = 75$ ksi for annealed A304 stainless steel sheet used to form the rail. $F_{cr} = \pi^2 k \eta E_0$ (eq 3.3.1.1-9) $12(1-\mu^2)(w/t)^2$ $\eta = 0.5$ (from table A6a) $k = 3(I_s/I_a)^{1/3} + 1 < 4.0 = 4.0$ for circular shape $\mu = 0.3$ $E_0 = 27.0 \text{ x} 10^3 \text{ psi}$ $F_{cr} = \pi^{2*}4.0*0.5*27.0 \text{ x}10^3 \text{ ksi} = 87.7 \text{ ksi but} \le F_U$ 12(1-0.3²)(1.25"/0.053")² $M_n = 1.25S_eF_v = 1.25*0.2282*30$ ksi = 8,558"# Vertical loading Controls 1.25*0.3587*30 ksi = 13,451"# Horizontal load or $M_{ULT} = S_f F_{cr} = 0.2282*75$ ksi = 17,115"# Vertical load **Controls** Ultimate 0.3587*75 ksi = 26,903"# Horizontal load Determine allowable rail spans (ignoring deflection) spans 2 lights minimum Live loads: 50 plf uniform or concentrated load Vertical \rightarrow uniform \rightarrow L= (8,558/12 • 10/(1.6*50plf))^{1/2} = 9.442' concentrated \rightarrow L = 8,558*5/(1.6*200#) = 133.72 cantilevered L = 8,558/(1.6*200) = 26.7"Ultimate Strength Vertical \rightarrow uniform \rightarrow L= (17,115/12 • 10/(1.6*50plf))^{1/2} = 13.352' concentrated \rightarrow L = 17,115*4/(334#) = 205"

cantilevered L = 17,115/334 = 51.24"

For laminated glass end light length based on horizontal strength Cantilevered end Vertical \rightarrow uniform \rightarrow L= (26,903/12 • 2/(1.6*50plf))^{1/2} = 7.487' concentrated \rightarrow L = 26,903/(334#) = 80.55" Fr 12" deflection: L = [12*3*20x10^{6*}0.4484/334]^{1/3} = 98.87" (doesn't control)

For light failure only horizontal load case applies for laminated glass.

GRL107MBL CAP RAIL R 1/4" (R 6.3 mm) 6063-T6 Aluminum 1 1/4" x 1 5/16" x 11 Ga 1-1/4" (31.7 mm) Area: 0.4463 sq in Ixx: 0.07768 in⁴ I_{vv}: 0.1122 in⁴ 1-5/16" rxx: 0.417 in (33.3 mm) rvv: 0.501 in S_{xx}: 0.0957 in³ S_{yy}: 0.1793 in³ (25.4 mm) Strength per 2015 ADM Section F.1 and F.2 $b/t = 1.0625 = 8.5 \le 14.5$ Lateral torsional buckling won't control. 0.125 Vertical loads $M_{nxy} = F_y Z_{xx} = 25 ksi * 0.0957 in^3 = 2,393"#$ $M_{nxu} = F_u Z_{xx} = 30 ksi * 0.0957 in^3 = 2,871"#$ $M_{ax} = M_{nxy} / n_s \le M_{nxu} / n_u = 2,393 / 1.65 = 1,450$ "# $\le 2,871 / 1.95 = 1,472$ "# Horizontal loads $M_{nyy} = F_y Z_{yy} = 25 ksi * 0.1793 in^3 = 4,483''#$ $M_{nvu} = F_u Z_{vv} = 30 ksi * 0.1793 in^3 = 5,379"#$ $M_{ax} = M_{nxy} / n_s \le M_{nxu} / n_u = 4483 / 1.65 = 2,717" \# \le 5,379 / 1.95 = 2,758" \#$ Vertical load: max span 50 plf horizontal load or 200 lb concentrated load $S = [2,717" #*10/(50plf*12")]^{1/2} = 6.73' \text{ or}$ $S = 2,717^{**} 5/200^{\#} = 675/8^{**}$ For cantilevered case: $S_C = 2.717/200 = 139/16$ " Horizontal load: max span 50 plf horizontal load or 200 lb concentrated load $S = [1,450^{"\#*}10/(50plf^*12^{"'})]^{1/2} = 4.916' \text{ or}$ $S = 1.450^{\#} \times 5/200^{\#} = 36.25^{\#}$ For cantilevered case: $S_{\rm C} = 1,450/200 = 7.25$ "

Page 48 of 71

L10MBL CAP RAIL Area: 0.4653 sq in I_{xx} : 0.09776 in⁴; I_{yy} : 0.1572 in⁴ r_{xx}: 0.4584 in ; r_{vv}: 0.5813 in C_{xx}: 0.7185 in ; C_{vv}: 0.890 in S_{xx}: 0.1098 in³ Syy: 0.209 in³ t = 0.125 in Strength per 2015 ADM Section F.1 and F.2 $b/t = 1.0625 = 8.5 \le 14.5$ Lateral torsional buckling 0.125 won't control. Vertical loads $M_{nxy} = F_y Z_{xx} = 25 ksi^{*} 0.1098 in^{3} = 2,745'' #$ $M_{nxu} = F_u Z_{xx} = 30 ksi * 0.1098 in^3 = 3,294"#$ $M_{ax} = M_{nxy} / n_s \le M_{nxu} / n_u = 2,745 / 1.65 = 1,664$ "# $\le 3,294 / 1.95 = 1,689$ "# Determine allowable rail spans (ignoring deflection) assumes multiple spans: Live loads: 50 plf uniform or 200 lb concentrated load Vertical \rightarrow uniform \rightarrow L = (1,664/12*10/(50plf))^{1/2} = 5.266' = 4'-4 3/16" concentrated $\rightarrow L = 1.664*5/(200\#) = 41.6" = 3' - 55/8"$

Cantilevered section: For 200# concentrated load: L = 1,664"#/(200) = 23.72" = 8' - 5/16"

Horizontal loads $M_{nyy} = F_y Z_{yy} = 25 ksi^{*} 0.209 in^{3} = 5,225'' #$ $M_{nyu} = F_u Z_{yy} = 30 ksi * 0.209 in^3 = 6,270$ "# $M_{ax} = M_{nxy} / n_s \le M_{nxu} / n_u = 5,225 / 1.65 = 3,167$ "# $\le 6,270 / 1.95 = 3,215$ "#

Horizontal \rightarrow uniform \rightarrow L= $(3.167/12*10/(50plf))^{1/2} = 7.265' = 7' - 4''$ concentrated \rightarrow L = 3,167*5/(200#) = 79 3/16"

Cantilevered section: For 200# concentrated load: L = 3,167'' # (200) = 23.72'' = 1' - 37/8''

GRL10MBL CAP RAIL

Area: 0.3949 sq in I_{xx} : 0.06763 in⁴ I_{yy} : 0.06324 in⁴ r_{xx} : 0.4139 in r_{yy} : 0.4002 in C_{xx} : 0.7760 in C_{yy} : 0.50 in S_{xx} : 0.08716 in³ S_{yy} : 0.1265 in³ t = 0.1177 in (11 ga)

Strength per 2015 ADM Section F.1 and F.2 $b/t = \frac{1.18}{0.125} = 9.5 \le 14.5$ Lateral torsional buckling won't control.

Vertical loads

$$\begin{split} M_{nxy} &= F_y Z_{xx} = 25 k si^* 0.08716 \text{ in}^3 = 2,179 \\ M_{nxu} &= F_u Z_{xx} = 30 k si^* 0.08716 \text{ in}^3 = 2,615 \\ M_{ax} &= M_{nxy} / n_s \leq M_{nxu} / n_u = 2,179 / 1.65 = 1,321 \\ \# \leq 2,615 / 1.95 = 1,341 \\ \# \leq 2,615 / 1.95 =$$

Determine allowable rail spans (ignoring deflection) assumes multiple spans:

Live loads: 50 plf uniform or 200 lb concentrated load

Vertical → uniform → L = $(1,321/12*10/(50plf))^{1/2} = 4.692' = 4'-8 5/16"$ concentrated →L = 1,321*5/(200#) = 33.0" = 2' - 7"

Cantilevered section:

For 200# concentrated load:

L = 1,321"#/(200) = 6-5/8"

Horizontal loads $M_{nyy} = F_y Z_{yy} = 25 \text{ksi*}0.1265 \text{ in}^3 = 3,163''\#$ $M_{nyu} = F_u Z_{yy} = 30 \text{ksi*}0.1265 \text{ in}^3 = 3,795''\#$ $M_{ax} = M_{nxy} / n_s \le M_{nxu} / n_u = 3,163/1.65 = 1,917''\# \le 3,795/1.95 = 1,946''\#$

Horizontal → uniform → L= $(1,917/12*10/(50plf))^{1/2} = 5.652' = 5' - 7 13/16"$ concentrated →L = 1,917*5/(200#) = 47.925" = 3' - 11 7/8"

Cantilevered section:

For 200# concentrated load: L = 1,917"#/(200) = 9.585" = 9.9/16"

HANDRAILS/GRAB RAILS

Guard applications require a top rail or grab rail. The grab rail shall have adequate strength to support the live load of 200 lb concentrated or 50 plf distributed load based on the applicable requirements for the material type. When installed along stairs a grab rail is required at between 34" and 38" above the stair tread nosing in accordance with IBC Section 1012. The terms handrail and grab rail are synonymous herein.

Stainless Steel Grab Rails:

The stainless steel grab rails are fabricated from 304 or 316 tube. The rail strength was evaluated in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members.

From Section 3.3.1.1 *Nominal section strength* 2. *Procedure II - Based on Inelastic Reserve Capacity:*

 $M_n = 1.25 S_e F_y$

 $\phi = 0.9$ for no local distortions allowed at nominal bending strength.

 F_{cr} is a function of rail geometry and is the maximum extreme fiber stress at compression element buckling failure, for t >0.5" F_{cr} will exceed F_y .

Brass Grab Rails: No design standard exists for brass therefore design is based on a either bending tension yield or compression buckling whichever controls with 1.6 load factor and 0.9 resistance factor.

Grab Rail Bending Moments

For a typical installation the grab rail will be continuous over a minimum of three simple supports with the ends cantilevered.

The bending moments are conservatively estimated as:

 $M_w = wL^2/8$ For uniform load case

 $M_c = PL/4$ For concentrated load at mid span load case

Or for cantilevered ends

 $M_{wc} = wL^2/2$ For uniform load case

 $M_{cc} = PL$ For concentrated load at end of rail.

Locate splice within lc of a support.

When mounted to glass lights there shall be a minimum of two brackets per glass light.

NOTE: The grab rail properties, strengths

and maximum spans herein are provided to assist the specifier in the selection of an appropriate grab rail. It is the specifier's responsibility to determine suitability for a specific application.

GRAB RAIL -1-1/4" SCHEDULE 40 PIPE RAIL

Stainless Steel .140" (3.6 mm) Pipe properties: Wall Thickness O.D. = 1.66" 1.66" I.D. = 1.38", t = 0.140" (42.2 mm) $A = 0.669 \text{ in}^2$ $I = 0.195 \text{ in}^4$ $S = 0.235 \text{ in}^3$ r = 0.540 in Stainless steel pipe in accordance with ASTM A312, or A554 Rail Service Loading: Brushed stainless steel, $F_y \ge 30 \text{ ksi}$, $F_u \ge 75 \text{ ksi}$ $\phi M_n = 0.9*1.25*S*F_v = 0.9*1.25*0.235*30$ ksi $\phi M_n = 7,931"#$ $M_1 = \phi M_n / 1.6 = 7,931 / 1.6 = 4,957$ "# = 413.1'# Allowable Span: Check based on simple span and

Design Loads: 50 plf distributed load, any direction or 200# concentrated load any direction. Wind load not applicable to pipe rails.

 $M = w(lg)^2/8$ or = P(lg)/4 Solve for lg: $lg = (8M/w)^{1/2} = [8*(413.1'\#/50plf)]^{1/2} = 8.13' = 8' - 1.5'' \text{ or}$ lg = (4M/P) = 4*413.1'#/200# = 8.262'Maximum allowable span for supports at both ends = 8'-1.5''-----Controlling span

For cantilevered section

cantilevered section.

 $M = w(lc)^2/2$ or = P(lc) Solving for lc $lc = (2M/w)^{1/2} = (2*413.1'\#/50plf)^{1/2} = 4.06'$ lc = M/P = 413.1'#/200# = 2.0655' = 2' - 3/4'' - ---- Controlling span

Locate splice within lc of a support.

GRAB RAIL -1-1/2" SCHEDULE 40 PIPE RAIL

Stainless Steel

Pipe properties: .145" (3.8 mm) Wall Thickness O.D. = 1.90" I.D. = 1.61", t = 0.145" 1.9" (48.3 mm) $A = 0.799 \text{ in}^2$ $I = 0.293 \text{ in}^4$ $S = 0.309 \text{ in}^3$ Z = 0.421 in³ minimum r = 0.623 in Stainless steel pipe in accordance with ASTM A312, or A554 Rail Service Loading: Brushed stainless steel, $F_y \ge 30 \text{ ksi}$, $F_u \ge 75 \text{ ksi}$ $\phi M_n = 0.9*1.25*S*F_v = 0.9*1.25*0.309*30$ ksi $\phi M_n = 10,429"\#$ $M_1 = \phi M_n / 1.6 = 6,518$ "# = 543.16'#

Allowable Span: Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200# concentrated load any direction. Wind load not applicable to pipe rails.

$$\begin{split} M &= w(lg)^{2}/8 \text{ or } = P(lg)/4 \text{ Solve for } lg: \\ lg &= (8M/w)^{1/2} = [8*(543.16'\#/50plf)]^{1/2} = 9.322' = 9'-3'' \text{ or } \\ lg &= (4M/P) = 4*543.16'\#/200\# = 10.863' \\ \text{Maximum allowable span for supports at both ends} = 9'-3''----Controlling span \end{split}$$

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)1/2 = (2*543.16'\#/50plf)^{1/2} = 4.787' = 4'9.5'' \text{ or} \\ lc &= M/P = 543.16'\#/200\# = 2.716' = 2'-8~1/2'' ---- Controlling span \end{split}$$

Locate splice within lc of a support.

GRAB RAIL -HRH15 1-1/2" x 1/8" WALL

Stainless Steel Pipe properties: O.D. = 1.50" I.D. = 1.25", t = 0.125" $A = 0.540 \text{ in}^2$ $I = 0.129 \text{ in}^4$ $S = 0.172 \text{ in}^3$ $Z = 0.236 \text{ in}^3$ minimum r = 0.488 in, $J = 0.255 \text{ in}^4$

Allowable Span: Check based on simple span and cantilevered section.

$$\begin{split} M &= w(\lg)^{2}/8 \text{ or } = P(\lg)/4 \text{ Solve for } \lg: \\ \lg &= (8M/w)^{1/2} = [8*(453.52'\#/50plf)]^{1/2} = 8.518' \text{ or} \\ \lg &= (4M/P) = 4*453.52'\#/200\# = 9.07' \\ \text{Maximum allowable span for supports at both ends} = 8'-6 3/16''\text{-Controlling span} \end{split}$$

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)1/2 = (2*453.52'\#/50plf)^{1/2} = 4.259' \text{ or} \\ lc &= M/P = 453.52'\#/200\# = 2.268' = 2' - 3 3/16'' \text{ ----- Controlling span} \end{split}$$

Locate splice within lc of a support.

Stanless steel tube in accordance with AS1M A554-10 Rail Service Loading: Brushed stainless steel, $F_y \ge 45$ ksi, $F_u \ge 91$ ksi $F_{cr} = \pi^2 k E_o / [12(1-\mu^2)(w/t)^2] = 4^* \pi^2 27,000 ksi / [12(1-0.3^2)(0.70/0.05)^2] = 124.5 ksi$ $\phi M_n = 0.9^* 1.25^* S^* F_y = 0.9^* 1.25^* 0.0799^* 45$ ksi $\phi M_n = 4,045^{"\#}$ $M_1 = \phi M_n / 1.6 = 2,528^{"\#} = 210.67^{"\#}$

Allowable Span: Check based on simple span and cantilevered section.

$$\begin{split} M &= w(\lg)^{2}/8 \text{ or } = P(\lg)/4 \text{ Solve for } \lg: \\ \lg &= (8M/w)^{1/2} = [8*(210.67'\#/50plf)]^{1/2} = 5.806' \text{ or} \\ \lg &= (4M/P) = 4*210.67'\#/200\# = 4.213' \\ \text{Maximum allowable span for supports at both ends} = 4'-2 9/16"\text{-Controlling span} \end{split}$$

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)1/2 = (2*210.67'\#/50plf)^{1/2} = 2.903' \text{ or} \\ lc &= M/P = 210.67'\#/200\# = 1.053' = 1' - 5/8'' ---- \text{ Controlling span} \end{split}$$

Locate splice within lc of a support.

GRAB RAIL -2" x 0.05" WALL Stainless Steel Pipe properties: O.D. = 2.0" I.D. = 1.90", t = 0.05" A = 0.306 in² I = 0.1457 in⁴ S = 0.1457 in³ r = 0.6896 in

Allowable Span: Check based on simple span and cantilevered section.

$$\begin{split} M &= w(\lg)^{2}/8 \text{ or } = P(\lg)/4 \text{ Solve for } \lg: \\ \lg &= (8M/w)^{1/2} = [8*(384.17'\#/50plf)]^{1/2} = 7.840' \text{ or} \\ \lg &= (4M/P) = 4*384.17'\#/200\# = 7.683' \\ \text{Maximum allowable span for supports at both ends} = 7'-8 3/16"\text{-Controlling span} \end{split}$$

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)1/2 = (2*384.17'\#/50plf)^{1/2} = 3.920' \text{ or} \\ lc &= M/P = 384.17'\#/200\# = 1.921' = 1'-10'' \text{ ----- Controlling span} \end{split}$$

Locate splice within lc of a support.

.140" (3.6 mm) Wall Thickness

GRAB RAIL -1-1/4" SCHEDULE 40 PIPE RAIL

6063-T6 Aluminum Pipe properties: O.D. = 1.66" I.D. = 1.38", t = 0.140" A = 0.669 in² I = 0.195 in⁴ S = 0.235 in³ r = 0.540 in Allowable stresses from ADM Table 2-24 $F_{bt} = 18.0 \text{ ksi}; R_b/t = 0.69/0.14 = 4.9 < 35; F_{bc} = 18.0 \text{ ksi}$ $M_a = S^*F_y = 0.235^*18 \text{ ksi} = 4,230"\# = 352.5'\#$

Allowable Span: Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200# concentrated load any direction. Wind load not applicable to pipe rails.

$$\begin{split} M &= w(lg)^{2}/8 \text{ or } = P(lg)/4 \text{ Solve for } lg: \\ lg &= (8M/w)^{1/2} = [8*(352.5'\#/50plf)]^{1/2} = 7.510' = \text{ or } \\ lg &= (4M/P) = 4*352.5'\#/200\# = 7.05' \\ \\ \text{Maximum allowable span for supports at both ends} = 7'-9/16''--Controlling span \end{split}$$

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)^{1/2} = (2*352.5'\#/50plf)^{1/2} = 3.755' \\ lc &= M/P = 352.5'\#/200\# = 1.7625' = 1' - 9 \ 1/8'' ---- Controlling \text{ span} \end{split}$$

Locate splice within lc of a support.

GRAB RAIL -1-1/2" SCHEDULE 40 PIPE RAIL 6063-T6 Aluminum

Pipe properties: .145" (3.8 mm) Wall Thickness O.D. = 1.90" I.D. = 1.61", t = 0.145" 1.9" (48.3 mm) $I = 0.293 \text{ in}^4$ $S = 0.309 \text{ in}^3$ CONTRACT OF CONTRACT Z = 0.421 in³ minimum r = 0.623 in Allowable stresses from ADM Table 2-24 $F_{bt} = 18.0 \text{ ksi}; R_b/t = 0.805/0.145 = 5.6 < 35; F_{bc} = 18.0 \text{ ksi}$ $M_a = S^*F_v = 0.309^*18 \text{ ksi} = 5,562^{"}\# = 463.5^{"}\#$ Allowable Span: Check based on simple span and

cantilevered section.**ö**Design Loads: 50 plf distributed load, any direction or 200# concentrated load any direction.

Wind load not applicable to pipe rails.

$$\begin{split} M &= w(lg)^{2}/8 \text{ or } = P(lg)/4 \text{ Solve for } lg: \\ lg &= (8M/w)^{1/2} = [8*(463.5'\#/50plf)]^{1/2} = 8.612' \text{ or} \\ lg &= (4M/P) = 4*463.5\#/200\# = 9.07' \\ \text{Maximum allowable span for supports at both ends} = 7'-1''\text{-Controlling span} \end{split}$$

For cantilevered section

 $M = w(lc)^{2}/2$ or = P(lc) Solving for lc lc $= (2M/w)^{1/2} = (2*463.5'\#/50plf)^{1/2} = 4.306'$ or lc = M/P = 463.5'#/200# = 2.318' = 2' -3-1/2''----- Controlling span

Locate splice within lc of a support.

Allowable Span: Check based on simple span and cantilevered section.

$$\begin{split} M &= w(lg)^{2}/8 \text{ or } = P(lg)/4 \text{ Solve for } lg: \\ lg &= (8M/w)^{1/2} = [8*(344.0'\#/50plf)]^{1/2} = 7.419' \text{ or} \\ lg &= (4M/P) = 4*344.0'\#/200\# = 6.88' \\ \end{split}$$
 Maximum allowable span for supports at both ends = 6'-10 9/16''-Controlling span

For cantilevered section

$$\begin{split} M &= w(lc)^{2}/2 \text{ or } = P(lc) \text{ Solving for } lc \\ lc &= (2M/w)1/2 = (2*344'\#/50plf)^{1/2} = 3.709' \text{ or} \\ lc &= M/P = 344'\#/200\# = 1.72' = 1' - 8.5/8'' ---- Controlling span \end{split}$$

Locate splice within lc of a support.

Grab rail attachment to bracket:

(2) #10 screws through 1/8" thick saddle plate into rail tube.

Tension strength of screw into grab rail $\phi T_{ns} = 0.75*0.014in^{2*}60ksi = 630\#$

For screw pullout: For stainless steel: $\sigma T_n = \sigma A_{sn} * t_c * 0.6 * F_{tu}$ $A_{sn} = 0.334 in^2/in$ $\sigma T_n = 0.75 * 0.334 * 0.125 * 0.6 * 70ksi = 1315 #$

For aluminum:

$$\begin{split} P_{not} &= K_s D t_c F_{ty2} = 1.2*0.164*0.128*16 \text{ksi} = 403 \text{\#} \\ P_a &= n P_{not} / n_s = 2 \text{screws} * 403 \text{\#} / 3 = 269 \text{\#} \end{split}$$

Page 60 of 71

BRACKET MOUNTED TO GLASS

V = M/3.5" = 588#

For glass bearing pressure:

A = 1.25 in² $f_B = 2.059"\#/1"*4 = 6,589$ psi max, Spacer strength > 7.5 ksi therefore okay 1.25in²

For brackets with bearing diameter larger than 2" the contact pressure will be less and thus okay by inference. The Bearing on glass will not control the allowable load for any of the bracket series.

GRAB RAIL BRACKET – HR2S Manhattan Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket – 316 Stainless steel rod Yield strength of steel: 316 1/4 hard round rod Fy = 75 ksi – tension

Vertical bar 1/2" x 3/4" bar Z_{bar} = 0.75*0.5"²/4 = 0.04687 in³ M_n = \emptyset M_u = $0.9*(0.04687in^{3}*75ksi)$ \emptyset M_n = 3.164"#

Ι

Allowable load per bracket
$$\begin{split} \lambda P &= M_n/e \\ \lambda &= 1.6 \text{ for live load} \\ P_s &= (3,164"\#/1.6)/3"=659\# \end{split}$$

Horizontal bar

Minimum $Z_{bar} = 0.5^{"3}/6 = 0.0208 \text{ in}^3$ $M_n = \phi M_u = 0.9^*(0.0208 \text{in}^{3*}75 \text{ksi})$ $M_n = 1404^{"\#}$ @ Bracket: $Z_{bar} = 0.75^{"3}/6 = 0.0703 \text{ in}^3$ $M_n = \phi M_u = 0.9^*(0.0703 \text{in}^{3*}75 \text{ksi})$ $M_n = 4,746^{"\#}$ $P_s = (1,404^{"\#}/1.6)/1.5^{"}= 585^{\#} \text{ or}$ $P_s = (4,746^{"\#}/1.6)/3.25^{"}= 913^{\#}$

GRAB RAIL BRACKET – HR2D Newport Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket – 1/2" Dia. 316 Stainless steel rod Yield strength of steel: 316 1/4 hard round rod $F_y = 75$ ksi – tension

$$\begin{split} Z_{bar} &= 0.5"^{3}\!/6 = 0.0208 \text{ in}^{3} \\ M_{n} &= \emptyset M_{u} = 0.9*(0.0208 \text{ in}^{3}*75 \text{ ksi}) \\ M_{n} &= 1404"\# \end{split}$$

Allowable load per bracket $\lambda P = M_n/e$ $\lambda = 1.6$ for live load e = 2.875"P = 1404"#/(1.6*2.9375") = 299#

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 299# PER BRACKET.

GRAB RAIL BRACKET – HR2E Malibu Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load Grab rail bracket – 3/4" Dia. 316 Stainless steel bar attached to mount with 3/8" threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in 3/4" bar edge.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; $F_{ut} = 90$ ksi

 $T_u = A*90 \text{ ksi} = 0.0775 \text{in}^{2*}90 \text{ ksi}$ $T_u = 6,975 \#$ $T_n = \emptyset T_u = 0.75*6,975 \# = 5,231 \#$ $T_{serv} = T_n / \lambda = 5,231 / 1.6 = 3,270 \#$ $\lambda = 1.6 \text{ for live load}$

Couple moment strength: $M_s = 3,270 \# 2/3 * 3/4" = 1,635" \#$ Factored load per bracket For maximum H = 2.5" $P = M_s/e$ e = H+1" = 3.5"P = 1,635" #/(3.5") = 467 #

Bending in 1/2" vertical bar, hardened SS: $Z = 0.5^{3}/6 = 0.02083 \text{ in}^{3}$ $\phi M_{n} = 0.02083*45 \text{ksi} = 937"#$ Vertical service load: $V_{S} = [(M_{n})/\Omega]/H = [937/1.67]/2.25 = 250#$

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 250# PER BRACKET.

GRAB RAIL BRACKET – HR3E Malibu Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load Grab rail bracket – 3/4" Dia. 316 Stainless steel bar threaded to the mounting plate.

Mounting plates attached through glass with 3/8" threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in mounting plates on glass.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; F_{ut} = 90ksi

$$\begin{split} T_u &= A*90 \text{ ksi} = 0.0775 \text{in}^{2*}90 \text{ksi} \\ T_u &= 6,975 \# \\ T_n &= \emptyset T_u = 0.75*6,975 \# = 5,231 \# \\ T_{serv} &= T_n / \lambda = 5,231 / 1.6 = 3,270 \# \\ \lambda &= 1.6 \text{ for live load} \end{split}$$

Couple moment strength: $M_s = 3,270\#2/3*3/4" = 1,635"\#$ Factored load per bracket For maximum H = 2.5" $P = M_s/e$ e = H+1" = 3.5"P = 1,635"#/(3.5") = 467#

Bending in ³/₄" horizontal bar: $Z = 0.75^{3}/6 = 0.0703 \text{ in}^{3}$ $\emptyset M_{n} = 0.9*0.0703*30 \text{ksi} = 1,898"\#$ Vertical service load: $V_{S} = [(\emptyset M_{n})/1.6]/2.25" = [1898/1.6]/2.25 = 527\#$

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 250# PER BRACKET.

Page 65 of 71

GRAB RAIL BRACKET – HR2F Coastal Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load Grab rail bracket -3/4" Dia. 316 Stainless steel bar attached to mount with 3/8" threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in 3/4" bar edge. For 3/8" 316 SS rod ASTM F593-98 CW or stronger; $F_{ut} = 90ksi$

 $T_u = A*90 \text{ ksi} = 0.0775 \text{ in}^{2*}90 \text{ ksi}$ $T_u = 6.975 \#$ $T_n = \phi T_u = 0.75*6,975\# = 5,231\#$ $T_{serv} = T_n / \lambda = 5,231 / 1.6 = 3,270 \#$ $\lambda = 1.6$ for live load

Couple moment strength: $M_s = 3,270 \# 2/3 \times 3/4" = 1,635" \#$ Factored load per bracket For maximum H = 2.5" $P = M_s/e$ e = H + 1" = 3.5"P = 1,635'' # / (3.5'') = 467 #

Bending in 1/2" vertical bar, hardened SS: $Z = 0.5^{3}/6 = 0.02083 \text{ in}^{3}$ $\phi M_n = 0.02083 * 45 \text{ksi} = 937" \#$ Vertical service load: $V_{\rm S} = [(M_{\rm n})/\Omega]/H = [937/1.67]/2.25 = 250\#$

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 250# PER BRACKET.

GRAB RAIL BRACKET – HR15G/HR20G La Jolla Series

MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket – 1/2" Dia. 316 Stainless steel rod Yield strength of steel: 316 1/4 hard round rod F_y = 75 ksi – tension

$$\begin{split} Z_{bar} &= 0.5"^{3}\!/6 = 0.0208 \text{ in}^{3} \\ M_{n} &= \emptyset M_{u} = 0.9*(0.0208 \text{ in}^{3}*75 \text{ksi}) \\ M_{n} &= 1404"\# \end{split}$$

Shear strength of screw connecting saddle to bracket arm: #8 screw in double shear- $A_v = 0.014$ in² $V_a = 2*A_v*0.6F_u/3$ (for double shear) $V_a = 2*0.014*0.6*75$ ksi/3 = 420#

Allowable load per bracket $\lambda P = M_n/e$ $\lambda = 1.6$ for live load e = 2.875"

P = 1404"#/(1.6*2.9375") = 299#

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 299# PER BRACKET.

GRAB RAIL BRACKET – HR15G/HR20G Pismo Series

MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket -1/2" Dia. 316 Stainless steel rod ¢ 2-15/16" Yield strength of steel: (75 mm) 316 1/4 hard round rod $F_v = 75 \text{ ksi} - \text{tension}$ 5/16"-18 ¢ Bolt Thread $Z_{bar} = 0.5^{3}/6 = 0.0208 \text{ in}^3$ 2-1/2" (64 mm) $M_n = \phi M_u =$ 0.9*(0.0208in³*75ksi) 2-3/8" (60 mm) $M_n = 1404"\#$ Allowable load per bracket NOTE: Requires 3/4" (19 mm) hole in glass $\lambda P = M_n/e$ $\lambda = 1.6$ for live load e = 2.875"

For strength of bracket on glass refer to HR2S calculations

P = 1404"#/(1.6*2.9375") = 299#

CONTROLLING ALLOWABLE LOAD IS 299# PER BRACKET.

GRAB RAIL BRACKET – HR2J Sunset Series MOUNTED TO 1/2" GLASS PANEL

Loading 200 lb concentrated load or 50 plf distributed load Grab rail bracket –

1" Dia. 316 Stainless steel bar attached to mount with 3/8" threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in 1" bar edge.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; $F_{ut} = 90ksi$

$$\begin{split} T_u &= A*90 \text{ ksi} = 0.0775 \text{in}^{2*}90 \text{ksi} \\ T_u &= 6,975 \# \\ T_n &= \emptyset T_u = 0.75*6,975 \# = 5,231 \# \\ T_{serv} &= T_n / \lambda = 5,231 / 1.6 = 3,270 \# \\ \lambda &= 1.6 \text{ for live load} \end{split}$$

Couple moment strength: $M_s = 3,270 \# 2/3 * 1" = 2,180" \#$ Factored load per bracket $P = M_s/e$ e = 3.5"P = 2,180" #/(3.5") = 623 #

Bending in 1/2" vertical bar, hardened SS: $Z = 0.5^{3}/6 = 0.02083 \text{ in}^{3}$ $\phi M_n = 0.02083^{*}45 \text{ksi} = 937"\#$ Vertical service load: $V_S = [(M_n)/\Omega]/H = [937/1.67]/2.25 = 250\#$

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 250# PER BRACKET.

GRAB RAIL BRACKET – HR5E Shore Series MOUNTED TO 1/2" GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load Grab rail bracket – 3/4" square 316 Stainless steel bar pressed to the mounting plate.

Mounting plates attached through glass with 3/8" threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in mounting plates on glass.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; F_{ut} = 90ksi

$$\begin{split} T_u &= A*90 \text{ ksi} = 0.0775 \text{in}^{2*}90 \text{ksi} \\ T_u &= 6,975 \# \\ T_n &= \emptyset T_u = 0.75*6,975 \# = 5,231 \# \\ T_{serv} &= T_n / \lambda = 5,231 / 1.6 = 3,270 \# \\ \lambda &= 1.6 \text{ for live load} \end{split}$$

Couple moment strength: $M_s = 3,270\#2/3*3/4" = 1,635"\#$ Factored load per bracket For maximum H = 2.5" $P = M_s/e$ e = H+1" = 3.5"P = 1,635"#/(3.5") = 467#

Bending in ³/₄" horizontal bar: $Z = 0.75^{3}/4 = 0.1055 \text{ in}^{3}$ $\emptyset M_n = 0.9*0.1055*30 \text{ksi} = 2,848"\#$ Vertical service load: $V_S = [(\emptyset M_n)/1.6]/2.25" = [2,848/1.6]/2.25 = 791\#$

For strength of bracket on glass refer to HR2S calculations CONTROLLING ALLOWABLE LOAD IS 250# PER BRACKET.

Grab Rail Attachment to Walls:

Bracket is secured to solid wood blocking using 3/8" closet screw, uses same thread as lag screw so withdrawal and shear capacity is the same as for 3/8" lag screw.

Withdrawal strength for screw into HF or denser wood ($G \ge 0.43$)

From NDS Table 11.2A: W = 243#/in $W' = W*C_d*e = 243\#/"*1.33*2"$ W' = 646#

Moment strength of connection: $M_a = 646\#*1.25" = 807.5"\#$

Allowable load on grab rail: $\Sigma M = 0 = 807.5$ "#-P*3" P = 807.5/3 = 269# horizontal or vertical load:

For shear (NDS Table 11K) Z = 160# $Z' = Z*C_d = 160*1.33 = 213\#$

Shear strength will control for vertical loads: maximum spacing: s = 213#/50plf = 4.26'

END PLATE POST

Stainless steel end post for insertion in base shoe to support the top rail where end support is required.

Post strength must be adequate to support 200# concentrated load (334# ultimate load strength).

 $M_u = 334\#*42" = 14,028"\#$

For stainless steel plate, 304 or 316, annealed condition: $F_y = 30 \text{ ksi}, F_u = 70 \text{ ksi}$ $\emptyset = 1.0 \text{ weak axis bending}$ $M_n = 1.25*F_y*b*t^2/6 \ge 14,028''\#$ t = glass nominal thickness and b = post width

Solving for b: b = 14,028*6/(1.25*30,000*t²) = 2.245/t²

For ½" glass: b = 2.245/0.5² = 9"

For ⁵/₈" glass b = 2.245/0.625² = 5.75"

For $\frac{3}{4}$ " glass b = 2.245/0.75² = 4"

Maximum thickness that can be used in base shoe: B5 shoes; t = 1": $b = 2.245/1^2 = 2^{-1/4}$ "

B6 shoes; t = 1 1/8" : b = 2.245/1.125² = 1-13/16"

B7 shoes; t = 1.25" : b = 2.245/1.25² = 1-7/16"

> EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@narrows.com

STAINLESS STEEL PLATE POST THICKNESS SAME AS GLASS

