Architectural Railing Division
C.R.Laurence Co., Inc.

2503 E Vernon Ave.
Los Angeles, CA 90058
SUBJ: GRS - GLASS RAIL SYSTEM -
TOP RAILS AND HANDRAILS

The GRS Glass Rail System utilizes an aluminum extruded base shoe to anchor and support structural glass balustrades which support a variety of top rails and handrails to construct guards and dividers. The GRS may be used for residential, commercial and industrial applications except for vehicle impacts. The GRS is designed for the following:
On Cap/Top/Hand / Grab Rail:
Concentrated load $=200 \mathrm{lbs}$ any direction, any location
Uniform load $=50 \mathrm{plf}$, any direction perpendicular to rail
The GRS system will meet all applicable requirements of the 2012 and 2009 International Building Code and state codes adopted from them, 2013 and 2010 California Building Code, Florida Building Code, and 2012 and 2009 International Residential Code. The GRS System complies with ASTM E 2358-04 Standard Specification for the Performance of Glass in Permanent Glass Railing Systems, Guards, and Balustrades. Aluminum components are designed in accordance with the 2005 Aluminum Design Manual. Stainless steel components are designed in accordance with SEI / ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members. Wood components are designed in accordance with the National Design Specification for Wood Construction. Glass lights are designed in accordance with AAMA CW 12-84 Structural Properties of Glass. When constructed as recommended the guards will meet the testing requirements of ICC AC 439 Acceptance Criteria for Glass Railing and Balustrade System, ASTM E-2353-06 Standard Test Methods for Performance of Glass in Permanent Glass Railing Systems, Guards and Balustrades. For a complete code compliant installation an appropriate cap/top rail or grab rail shall be installed on appropriately sized glass installed in a matching base shoe properly mounted to the supporting structure. This report is in support of the the approval of the system in ESR-3269.

CONTENTS:

Item
Signature Page

Cap Rails Design
Page

Stainless steel and brass round cap rails
GR 15 5-6
Cap Rail Conn. Sleeves/Corners 7
GR 168
GR $20 \quad 9-10$
GR 25 11-12
GR $30 \quad 13-14$
GR 35 15-16
GR 40
GR 207
17-18
19
GR 257
20-21
GR 307
22-23
GR 19 Aluminum 24
GR 25 Aluminum 25
GR 30 Aluminum 26
GR 35 Aluminum 27
GROV4 Aluminum 28
GR307M Aluminum 29
Aluminum welded corners 30
Stabilizing end caps 31
Wood Cap Rails 32
Square stainless steel cap rails
GRS15/GRSC15
33
GRS20/GRSC20 34
GRS25 35
SRF15 36
SRF20 37
GRLC10 38
GRL10 39
GRL107/GRLC107 40
L10 41
GRRF15 42
GRRF20 43
LR20 44
LR25 45
Blumcraft 324
GRL107MBL
46
47
L10MBL 48
GRL10MBL

Hand Rail/Guard Rail

Grab Rails Design 50
1-1/4" Schedule 40 Stainless 51
$1-1 / 2$ " Schedule 40 Stainless 52
$1-1 / 2$ " $\times 1 / 8^{\prime \prime}$ Tube Stainless 53
$1-1 / 2^{\prime \prime} \times 0.05$ " Tube Stainless 54
2 " x 0.05 " Tube Stainless 55
1-1/4" Schedule 40 Aluminum 56
1-1/2" Schedule 40 Aluminum 57
$1-1 / 2$ " x $1 / 8^{\prime \prime}$ Tube Aluminum 58
GRAB RAIL BRACKETS
Grab Rail Bracket attachment 59
Bracket mounted to glass 60
HR2S 61
HR2D 62
HR2E 63
HR3E 64
HR2F 65
HR15G/HR20G La Jolla 66
HR15G/HR20G Pismo 67
HR2J 68
HR5E 69
Bracket attachment to wood 70
S. Steel Plate End Post 71

Signature Page: Signed 06 July 2020

TOP/CAP RAILS DESIGN

Guard applications require a top rail or handrail. The rail shall have adequate strength to support the live load of 200 lb concentrated or 50 plf distributed load assuming the failure of one glass light at the location of the loading. No US building codes or adopted standards define the limit state of the guard cap rail for this condition. IBC 2407.1.2 states "shall be otherwise supported to remain in place should one baluster fail." There is no additional explanation in the IBC as to how this is to be determined. ICC Acceptance Criteria 439 was adopted to provide a methodology for determining if a glass balustrade guard meets the requirements of IBC 2407. ICC AC 439 requires the rail to be capable of supporting a $334 \#$ load ($\mathrm{SF}=1.67$ for 200 \# load) with no more than 12 " deflection, yielding or other damage is permitted since the loss of a glass light will necessitate guard repairs. For light failure only the horizontal load case applies for laminated glass. The terms top rail and cap rails are synonymous herein.

Stainless Steel Cap Rails:
The stainless steel cap rails are fabricated from 304 or 316 annealed sheet. The rail strength was evaluated in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members.
From Section 3.3.1.1 Nominal section strength 2. Procedure II - Based on Inelastic Reserve Capacity:
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}$
$\emptyset=1.0$ (Small local distortions are acceptable)
or for ultimate strength
$\mathrm{M}_{\text {nult }}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{cr}}$
F_{cr} is a function of rail geometry and is the maximum extreme fiber stress at compression element buckling failure.

Cap Rail Bending Moments

For a typical installation the cap rail will be continuous supported along at least one glass light with a simple support on the opposite end or cantilevered.
The bending moments are conservatively estimated as:
$\mathrm{M}_{\mathrm{w}}=\mathrm{wL}^{2} / 10$ For uniform load case
$\mathrm{M}_{\mathrm{c}}=$ PL/5 For concentrated load at mid span load case
Or for cantilevered case, end light failure
$\mathrm{M}_{\mathrm{wc}}=\mathrm{wL}^{2 / 2}$ For uniform load case
$\mathrm{M}_{\mathrm{cc}}=$ PL For concentrated load at end of rail
Brass Cap Rails: No design standard exists for brass therefore design is based on a either bending tension yield or compression buckling whichever controls with 1.6 load factor and 0.9 resistance factor.

NOTE: The cap rail properties, strengths and maximum spans herein are provided to assist the specifier in the selection of an appropriate cap rail. It is the specifier's responsibility to determine suitability for a specific application.

EDWARD C. ROBISON, PE, SE 10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

GR 15 SERIES CAP RAIL

Area: 0.3343 sq in
Perim: 13.093 in
$\mathrm{I}_{\mathrm{xx}}: 0.0504 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.07395 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.3883$ in
$\mathrm{r}_{\mathrm{yy}}: 0.4703$ in
$\mathrm{C}_{\mathrm{xx}}: 0.6647$ in
$\mathrm{C}_{\mathrm{yy}}: 0.75$ in
$\mathrm{S}_{\mathrm{xx}}: 0.07583 \mathrm{in}^{3}$ or $0.07956 \mathrm{in}^{3}$

$S_{y y}: 0.09859$ in 3
$\mathrm{t}=0.05 \mathrm{in}$
Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed 304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{} \quad($ eq 3.3.1.1-9)

$$
12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}
$$

$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \mathrm{x} 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2 *} 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.5991^{\prime \prime} / 0.05^{\prime \prime}\right)^{2}}=339.9 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.07583 * 30 \mathrm{ksi}=2.844 \mathrm{k}$ " Vertical loading Controls
$1.25 * 0.09859 * 30 \mathrm{ksi}=3.697 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.07583 * 75 \mathrm{ksi}=5.687 \mathrm{k}$ " Vertical load $0.09859 * 75 \mathrm{ksi}=7.394 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection), multiple spans
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(2,844 / 12 \bullet 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=5.443$,
concentrated $\rightarrow \mathrm{L}=2,844 * 5 /(334 \#)=42.57 "=3 '-69 / 16 "$
ultimate strength $\rightarrow \mathrm{L}=5,687 * 4 /(334 \#)=68.1^{\prime \prime}=5^{\prime} 8^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(3,697 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=6.206^{\prime}=6^{\prime}-1.5^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=3,697 * 5 /(334 \#)=55.34 "=4 \prime-75 / 16$ "
ultimate strength $\rightarrow \mathrm{L}=7,394 * 4 /(334 \#)=88.5^{\prime \prime}=7 \prime-41 / 2^{\prime \prime}$
Cantilever:

$$
\mathrm{L}=5,678 / 334^{\prime \prime}=17^{\prime \prime}
$$

Maximum glass light length for GR 15 SS rail is 4' 7 "

GR 15 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2 *} 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)(0.5991 " / 0.05 ")^{2}}=214.6 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.07583 * 43 \mathrm{ksi}=3.261 \mathrm{k} "$ Vertical loading Controls $0.09859 * 43 \mathrm{ksi}=4.128 \mathrm{k}$ " Horizontal load

Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(0.9 * 3,261 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=5.529^{\prime}$ concentrated $\rightarrow \mathrm{L}=0.9 * 3,261 * 5 /(334 \#)=43.94 "=3 \prime-715 / 16 "$ cantilevered $\rightarrow \mathrm{L}=0.9^{*} 3,261 /(334 \#)=8.79 "$

Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 4,128 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=6.221^{\prime}=6^{\prime}-25 / 8^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=0.9 * 4,128^{*} 5 /(334 \#)=55.62 "=4^{\prime}-75 / 8^{\prime \prime}$ cantilevered $\rightarrow \mathrm{L}=0.9 * 4,128 /(334 \#)=11.123 "$

Maximum glass light length with $1-1 / 2^{\prime \prime}$ brass rail is $3^{\prime} 7^{\prime \prime}$

Connector Sleeves

The sleeves fit tight (radial compression required) inside the rail and are secured with adhesive. The sleeve provides shear transfer between rail sections, vertically and horizontally. The sleeves can be used to connect straight or curved rail sections to corners and other rail sections.
Minimum shear strength of connectors:
For stainless steel:

$$
\begin{gathered}
\mathrm{F}_{\mathrm{yv}}=17 \mathrm{ksi} \\
\mathrm{t}=0.05 ", \mathrm{~h}=2.95 " \text { (for } 1-1 / 2^{\prime \prime} \text { rail) } \\
\mathrm{V}_{\mathrm{n}}=4.84 \mathrm{E}_{\mathrm{o}} \mathrm{t}^{3}\left(\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}\right) / \mathrm{h} ; \emptyset=0.85 \\
\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}=0.90 ; \mathrm{E}_{\mathrm{o}}=24,000 \mathrm{ksi} \\
\mathrm{~V}_{\mathrm{n}}=4.84^{*} 24,000 \mathrm{ksi}^{*} 0.05^{3}(0.90) / 2.95 "=4,429 \# \\
\text { or } \mathrm{V}_{\mathrm{n}}=0.95^{*}\left(17 \mathrm{ksi}^{*} * 0.05^{\prime \prime} * 2.95 "\right)=2,382 \# \\
\mathrm{~V}_{\mathrm{s}}=\emptyset \mathrm{V}_{\mathrm{n}} / 1.6=0.85^{*} 2,382 / 1.6=1,265 \#
\end{gathered}
$$

For Brass:

$$
\mathrm{F}_{\mathrm{yv}}=25 \mathrm{ksi}
$$

$$
\mathrm{t}=0.05^{\prime \prime}, \mathrm{h}=2.95^{\prime \prime}\left(\text { for } 1-1 / 2^{\prime \prime} \text { rail }\right)
$$

$\mathrm{V}_{\mathrm{n}}=0.95 *(25 \mathrm{ksi} * 0.05 \cdots * 2.95 ")=3,503 \#$ controls
$\mathrm{V}_{\mathrm{s}}=\emptyset \mathrm{V}_{\mathrm{n}} / 1.6=0.85 * 3,503 / 1.6=1,861 \#$

Welded Corners

Constructed from the standard rail sections. Corners are welded all around full thickness of metal.
Load on corner is limited to shear and tension at corner.
Shear strength is same as the connector sleeve (weld length is same as connector perimeter)

Tension: $=1 / 0.6^{*} \mathrm{~V}=1.667 \mathrm{~V}$
$\mathrm{T}_{\mathrm{ss}}=1.667 * 1,265 \#=2,108 \#$
$\mathrm{T}_{\mathrm{br}}=1.667 * 1,861=3,102 \#$
Maximum load, shear or tension is 200\# therefore okay.

Custom Angle Corners

Corners may be welded at any angle, vertical or horizontal angles.
Compound angles may be used.
The strength of the angle is not decreased below that for the 90° angle used for the standard calculation therefore strength adequacy is demonstrated for all angles.

GR 16 SERIES CAP RAIL

Area: 0.3695 sq in
Perim: 14.02 in
$\mathrm{I}_{\mathrm{xx}}: 0.06699 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.10145 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4258$ in
r_{yy} : 0.524 in
$\mathrm{C}_{\mathrm{xx}}: 0.73135$ in
$C_{y y}: 0.830$ in
$\mathrm{S}_{\mathrm{xx}}: 0.0916$ in 3 or 0.1008 in 3

$S_{\text {yy: }} 0.1222$ in 3
$\mathrm{t}=0.05 \mathrm{in}$
Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{} \quad($ eq 3.3.1.1-9)

$$
12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}
$$

$\eta=0.50$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.50 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.698^{\prime \prime} / 0.05^{\prime}\right)^{2}}=250.4 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25^{*} \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.0916 * 30 \mathrm{ksi}=3,435 \mathrm{k}$ " Vertical loading Controls
$1.25^{*} 0.1222 * 30 \mathrm{ksi}=4.583 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.0916^{*} 75 \mathrm{ksi}=6.870 \mathrm{k} "$ Vertical load
$0.096^{*} 75 \mathrm{ksi}=7.2 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection), multiple spans
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(3,435 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=5.982$,
concentrated $\rightarrow \mathrm{L}=3,435^{*} 5 /(334 \#)=51.42^{\prime \prime}=4 \prime 33 / 8^{\prime \prime}$
ultimate strength $\rightarrow \mathrm{L}=6,870^{*} 4 /\left(1.6^{*} 200 \#\right)=85.875^{\prime \prime}=6^{\prime} 47 / 8^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=(4,583 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=6.909$,
concentrated $\rightarrow \mathrm{L}=4,583 * 5 /(334 \#)=68.61 "=5 \prime 8-5 / 8^{\prime \prime}$
ultimate strength $\rightarrow \mathrm{L}=7,200 * 4 /(334 \#)=86.23 "$
Cantilever:

$$
\mathrm{L}=6,870 / 334 "=20.57 "
$$

CRL GR 20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails
Area: 0.473 sq in
Perim: 17.78 in
$\mathrm{I}_{\mathrm{xx}}: 0.142 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.174 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.548$ in
r_{yy} : 0.606 in
$\mathrm{C}_{\mathrm{xx}}: 0.980$ in
$C_{y y}: 1.000$ in
$S_{x x}: 0.148$ in 3 or 0.138
$S_{y y}: 0.169$ in 3

$\mathrm{t}=0.05$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
(eq 3.3.1.1-9)
$\eta=0.5$ (from table A8a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.95^{\prime \prime} / 0.05^{"}\right)^{2}}=135.2 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.138 * 30 \mathrm{ksi}=5.18 \mathrm{k}$ " Vertical loading Controls
$1.25 * 0.169^{*} 30 \mathrm{ksi}=6.33 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.148 * 75 \mathrm{ksi}=11.1 \mathrm{k}$ " Vertical load Controls
$0.169 * 75 \mathrm{ksi}=12.675 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=(6,330 / 12 \cdot 10 /(1.6 * 50 \text { plf }))^{1 / 2}=8.12^{\prime}$ concentrated $\rightarrow \mathrm{L}=6,330 * 5 /(334 \#)=94.76 "=7 \prime 103 / 4 "$ cantilevered $\rightarrow \mathrm{L}=6,330 /(334 \#)=18.95^{\prime \prime}=1^{\prime} 615 / 16^{\prime \prime}$
ULTIMATE STRENGTH

$$
\begin{aligned}
\text { Vertical } \rightarrow \text { uniform } \rightarrow \mathrm{L}=\left(11,100 / 12 \bullet 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=9.617^{\prime}=9^{\prime}-73 / 8^{\prime \prime} \\
\quad \text { concentrated } \rightarrow \mathrm{L}=11,100 * 4 /(334 \#)=132.93^{\prime \prime} \\
\text { cantilevered } \rightarrow \mathrm{L}=11,100 /(334 \#)=33.23^{\prime \prime}=2^{\prime} 91 / 4 " \prime
\end{aligned}
$$

GR 20 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)\left(0.95 " / 0.05^{\prime \prime}\right)^{2}}=87.75 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.138^{*} 43 \mathrm{ksi}=5.934 \mathrm{k}$ " Vertical loading Controls $0.169^{*} 43 \mathrm{ksi}=7,267 \mathrm{k}$ " Horizontal load

Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9 * 5,934 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=8.333^{\prime}=8^{\prime}-4^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 5,934 * 5 /(334 \#)=79.95^{\prime \prime}=6^{\prime}-715 / 16^{\prime \prime}$
cantilevered $\rightarrow \mathrm{L}=0.9 * 5,934 /(334 \#)=16 \prime=1^{\prime} 4^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9 * 7,267 / 12 \bullet 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=8.254^{\prime}=8^{\prime}-3^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 7,267 * 5 /(334 \#)=97.91 "=8^{\prime}-17 / 8^{\prime \prime}$
cantilevered $\rightarrow \mathrm{L}=0.9^{*} 7,267 /(334 \#)=19.58=1$ ' $-79 / 16^{\prime \prime}$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 25 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.656 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.333 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.387 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.712$ in
r_{yy} : 0.768 in
$\mathrm{C}_{\mathrm{xx}}: 1.213$ in
$C_{y y}: 1.250$ in
$S_{x x}: 0.274$ in 3 or 0.259
Syy: $0.310 \mathrm{in}^{3}$
$\mathrm{t}=0.0625^{\prime \prime}$

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
(eq 3.3.1.1-9)
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} * 4.0 * 0.50 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)(1.20 "}=84.7 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$12\left(1-0.3^{2}\right)\left(1.20 " / 0.0625^{\prime \prime}\right)^{2}$
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.274 * 30 \mathrm{ksi}=10.27 \mathrm{k}$ " Vertical loading Controls
$1.25 * 0.310^{*} 30 \mathrm{ksi}=11.62 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.259 * 75 \mathrm{ksi}=19.425 \mathrm{k}$ " Vertical load Controls Ultimate
$0.310 * 75 \mathrm{ksi}=23.25 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(10,270 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=9.722^{\prime}$
concentrated $\rightarrow \mathrm{L}=10,270 * 5 /(334 \#)=153.74$
cantilevered $\rightarrow \mathrm{L}=10,270 /(334 \#)=30.75^{\prime \prime}=2^{\prime} 63 / 4^{\prime \prime}$

ULTIMATE STRENGTH
 Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(19,425 / 12 \bullet 8 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=12.723$,
 concentrated $\rightarrow \mathrm{L}=19,425^{*} 4 /(334 \#)=232.63 "$
 cantilevered $\rightarrow \mathrm{L}=19,425 /(334 \#)=58.16^{\prime \prime}=4^{\prime} 101 / 8^{\prime \prime}$

GR 25 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$ $12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)\left(1.2 " / 0.05^{\prime \prime}\right)^{2}}=53.48 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.274 * 43 \mathrm{ksi}=11.782 \mathrm{k}$ " Vertical loading
$0.310^{*} 43 \mathrm{ksi}=13.33 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9 * 11,782 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=10.51^{\prime}=10^{\prime}-6 "$
concentrated $\rightarrow \mathrm{L}=0.9^{*} 11,782 * 5 /(334 \#)=158.74^{\prime \prime}=12^{\prime} 3.5 \prime$
cantilevered $\rightarrow \mathrm{L}=0.9^{*} 11,782 /(334 \#)=31.75^{\prime \prime}=2^{\prime} 73 / 4^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 13,330 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=11.178^{\prime}-11^{\prime}-2^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 13,330 * 5 /(334 \#)=179.60$
cantilevered $\rightarrow \mathrm{L}=0.9^{*} 13,330 /(334 \#)=35.92^{\prime \prime}=2^{\prime} 117 / 8^{\prime \prime}$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 30 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.755 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.608 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.653 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.897$ in
r_{yy} : 0.930 in
$\mathrm{C}_{\mathrm{xx}}: 1.54$ in
$\mathrm{C}_{\mathrm{yy}}: 1.50$ in
Syy: $0.405 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{xx}}: 0.424 \mathrm{in}^{3}$ or $0.447 \mathrm{in}^{3}$
$t=0.0625^{\prime \prime}$
Allowable stresses:
For stainless steel options: design using
 SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad($ eq 3.3.1.1-9)
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.50 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.375^{\prime \prime} / 0.0625^{\prime \prime}\right)^{2}}=63.2 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.424 * 30 \mathrm{ksi}=15.9 \mathrm{k}$ " Vertical loading
$1.25^{*} 0.405^{*} 30 \mathrm{ksi}=15.19 \mathrm{k}$ " Horizontal load Controls
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.447 * 63.2 \mathrm{ksi}=28.25 \mathrm{k}$ " Vertical load
$0.405^{*} 63.2 \mathrm{ksi}=25.596 \mathrm{k}$ " Horizontal load Controls Ultimate
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(15,190 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=12.579^{\prime}$
concentrated $\rightarrow \mathrm{L}=15,195^{*} 5 /(334 \#)=227.47^{\prime \prime}=18^{\prime} 11.47^{\prime \prime}$

ULTIMATE STRENGTH

Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(25,596 / 12 \cdot 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=14.60^{\prime}$
concentrated $\rightarrow \mathrm{L}=25,596^{* 5 /(334 \#)}=383 "$
cantilevered $\rightarrow \mathrm{L}=25,596 /(334 \#)=76.63 "=6 \prime 45 / 8^{\prime \prime}$
cantilevered $\rightarrow \mathrm{L}=\sqrt{ }\left[2 * 25,596 / 12 /\left(1.8^{*} 50 \#\right)\right]=6.885^{\prime}$

EDWARD C. ROBISON, PE, SE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

GR 30 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$
$12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)\left(1.375 " / 0.05^{\prime \prime}\right)^{2}}=40.7 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.424 * 43 \mathrm{ksi}=18,232 \mathrm{k}$ " Vertical loading
$0.405^{*} 43 \mathrm{ksi}=17,415 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.447 * 40.7 \mathrm{ksi}=18,193 \mathrm{k}$ " Vertical load Controls $0.405^{*} 40.7 \mathrm{ksi}=16,483 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 18,193 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=14.6^{\prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 18,193 * 5 /(1.6 * 200 \#)=255 "$
cantilevered $\rightarrow \mathrm{L}=18,193 /(334 \#)=54.47^{\prime \prime}=4^{\prime} 67 / 16^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 16,483 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf})\right)^{1 / 2}=13.9^{\prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 16,483 * 5 /\left(1.6^{*} 200 \#\right)=231 "=19^{\prime}-3 "$
cantilevered $\rightarrow \mathrm{L}=16,483 /(334 \#)=49.35 \prime \prime=4 \prime 15 / 16^{\prime \prime}$

Connector Sleeves

Corners
The connector sleeves and corners are demonstrated as adequate based on strength for the $1-1 / 2$ " size.

CRL GR 35 SERIES CAP RAIL
Used as the top rail on glass balustrade panel guardrails

Area: 0.866 sq in
$\mathrm{I}_{\mathrm{xx}}: 1.02 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.05 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 1.086$ in
r_{yy} : 1.102 in
$\mathrm{C}_{\mathrm{xx}}: 1.769$ in
$\mathrm{C}_{\mathrm{yy}}: 1.75$ in
$S_{\text {yy: }} 0.583 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{xx}}: 0.594 \mathrm{in}^{3}$ or $0.607 \mathrm{in}^{3}$
$\mathrm{t}=0.0625$ "
Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad(\text { eq 3.3.1.1-9) } \\
& \eta=0.5(\text { from table A6a) } \\
& \mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0 \text { for circular shape } \\
& \mu=0.3 \\
& \mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cr}}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.70 " / 0.0625^{\prime \prime}\right)^{2}} \\
& \mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}}=1.25 * 0.594 * 30 \mathrm{ksi}=22.27 \mathrm{ksi} \text { " but } \leq \mathrm{F}_{\mathrm{U}} \\
& 1.25 * 0.583 * 30 \mathrm{ksi}=21.86 \mathrm{k} " \text { Horizontal load load Controls } \\
& \text { or } \mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{~F}_{\mathrm{cr}}=0.607 * 42.2 \mathrm{ksi}=25.615 \mathrm{k} " \text { Vertical load } \\
& 0.583 * 42.2 \mathrm{ksi}=24.603 \mathrm{k} " \text { Horizontal load Controls Ultimate }
\end{aligned}
$$

Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=(21,860 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=15.09^{\prime}$
concentrated $\rightarrow \mathrm{L}=21,860^{*} 5 /(334 \#)=327^{\prime \prime}=37^{\prime} 3^{\prime \prime}$
cantilevered $\mathrm{L}=21,860 / 334=65.45^{\prime \prime}=5 \prime 57 / 16^{\prime \prime}$
Ultimate strength
Horizontal \rightarrow uniform $\rightarrow \quad \mathrm{L}=(24,603 / 12 \bullet 8 /(1.6 * 50 \text { plf }))^{1 / 2}=14.319$,
concentrated $\rightarrow \mathrm{L}=24,603 * 4 /(334 \#)=294.65$
cantilevered $\mathrm{L}=24,603 / 334=73.66^{\prime \prime}=6^{\prime}-22^{2 / 3 \prime}$

GR 35 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$
$12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)(1.70 " / 0.05 ")^{2}}=41.4 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.594 * 43 \mathrm{ksi}=25.542 \mathrm{k}$ " Vertical loading
$0.583 * 43 \mathrm{ksi}=25.069 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.607 * 41.4 \mathrm{ksi}=25.130 \mathrm{k}$ " Vertical load Controls
$0.583 * 41.4 \mathrm{ksi}=24.136 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 25,130 / 12 \bullet 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=13.729^{\prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 25,130 * 4 /(334 \#)=282.7 "$
cantilevered $\mathrm{L}=0.9^{*} 25,130 / 334=67.72 \prime=5^{\prime} 711 / 16^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 24,136 / 12 \cdot 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=13.454^{\prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 24,136^{*} 4 /(334 \#)=271.52$ "
cantilevered $\mathrm{L}=0.9 * 24,136 / 334=66.04 "=5 \prime 6^{\prime \prime}$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 40 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.952 sq in
$\mathrm{I}_{\mathrm{xx}}: 1.553 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.529 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 1.277$ in
r_{yy} : 1.267 in
$\mathrm{C}_{\mathrm{xx}}: 2.131$ in
Cyy: 2.000 in
$\mathrm{S}_{\mathrm{xx}}: 0.729 \mathrm{in}^{3}$
or $0.831 \mathrm{in}^{3}$
Syy: 0.765 in 3
$t=0.0625$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad(\text { eq 3.3.1.1-9 }) \\
& \eta=0.5(\text { from table A6a }) \\
& \mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0 \text { for circular shape } \\
& \mu=0.3 \\
& \mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi} \\
& \mathrm{~F}_{\mathrm{cr}}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.95 " / 0.0625^{\prime \prime}\right)^{2}}=32.09 \mathrm{ksi} \text { but } \leq \mathrm{F}_{\mathrm{U}} \\
& \mathrm{M}_{\mathrm{n}}=1.25^{*} \mathrm{~S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}}=1.25^{*} 0.729^{*} 30 \mathrm{ksi}=27.33 \mathrm{k} " \text { Vertical loading } \\
& 1.25^{*} 0.765^{*} 30 \mathrm{ksi}=28.687 \mathrm{k} " \text { Horizontal load } \\
& \text { or Mult }=\mathrm{S}_{\mathrm{f}} \mathrm{~F}_{\mathrm{cr}}=0.831 * 32.09 \mathrm{ksi}=26.667 \mathrm{k} " \text { Vertical load Controls } \\
& 0.765^{*} 32.09 \mathrm{ksi}=24.549 \mathrm{k} " \text { Horizontal load Controls ultimate } \\
& \text { Determine allowable rail spans (ignoring deflection) }
\end{aligned}
$$

Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(26,667 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=16.667^{\prime}=16^{\prime}-8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=26,667 * 5 /(334 \#)=399.21$ "
cantilevered $\mathrm{L}=26,667 / 334=79.84 "=6^{\prime}-713 / 16^{\prime \prime}$

$$
\begin{aligned}
& \text { Horizontal } \rightarrow \text { uniform } \rightarrow \quad \mathrm{L}=\left(24,549 / 12 \bullet 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=15.991{ }^{\prime}=15^{\prime}-117 / 8 \\
& \text { concentrated } \rightarrow \mathrm{L}=24,549 * 5 /(334 \#)=367.5^{\prime \prime} \\
& \text { cantilevered } \quad \mathrm{L}=24,549 / 334=73.5 "=6 \text { '-1 } 1 / 2 "
\end{aligned}
$$

GR 40 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)\left(1.95 " / 0.05^{\prime \prime}\right)^{2}}=20.25 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.729 * 43 \mathrm{ksi}=31,347 \mathrm{k}$ " Vertical loading
$0.765 * 43 \mathrm{ksi}=32,895 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.831 * 20.25 \mathrm{ksi}=16.83 \mathrm{k}$ " Vertical load Controls
$0.765^{*} 20.25 \mathrm{ksi}=15.491 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9 * 16,830 / 12 \bullet 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=12.561^{\prime}=10^{\prime}-63 / 4$ "
concentrated $\rightarrow \mathrm{L}=0.9 * 16,830 * 5 /(334 \#)=226.75 "$
cantilevered $\mathrm{L}=0.9^{*} 16,830 / 334=45.35 "=3 '-93 / 8^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 15,491 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=17.085^{\prime}=17^{\prime}-1^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 15,491 * 5 /(334 \#)=208.7 "$
cantilevered $\mathrm{L}=0.9^{*} 15,491 / 334=41.74^{\prime \prime}=3^{\prime}-53 / 4 "$

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL GR 207 SERIES CAP RAIL
Used as the top rail on glass balustrade panel guardrails. Use with 3/4" glass balustrades
Area: 0.529 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.141 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.222 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.516$ in
$\mathrm{r}_{\mathrm{yy}}: 0.648$ in
$\mathrm{C}_{\mathrm{xx}}: 0.929$ in $\mathrm{C}_{\mathrm{yy}}: 1.00$ in
$\mathrm{S}_{\mathrm{xx}}: 0.152 \mathrm{in}^{3}$ or 0.132 in 3
Syy: $0.221 \mathrm{in}^{3}$

$\mathrm{t}=0.05$ "
Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.95^{\prime \prime} / 0.05^{\prime \prime}\right)^{2}}=135.2 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.132 * 30 \mathrm{ksi}=4.95 \mathrm{k}$ " Vertical loading Controls
$1.25 * 0.221 * 30 \mathrm{ksi}=8.287 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.152 * 75 \mathrm{ksi}=11.4 \mathrm{k}$ " Vertical load Controls Ultimate
$0.221 * 75 \mathrm{ksi}=16.575 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(4,950 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=7.181^{\prime}$
concentrated $\rightarrow \mathrm{L}=4,950 * 5 /\left(1.6^{*} 200 \#\right)=77.34 "=6 \prime 5 / 16 "$
cantilevered $\mathrm{L}=4,950 / 334=15.47^{\prime \prime}$
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(11,400 / 12 \cdot 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=9.75^{\prime}=9^{\prime}-9^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=11,400 * 4 /(334 \#)=136.53$ "
cantilevered $\mathrm{L}=11,400 / 334=34.13^{\prime \prime}=2^{\prime}-10 \frac{1}{\prime} 8^{\prime \prime}$
Connector Sleeves and Corners
The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.
No Brass option for GR 207

CRL GR 257 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.634 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.295 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.402 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.682$ in
r_{yy} : 0.796 in
$\mathrm{C}_{\mathrm{xx}}: 1.165$ in
$\mathrm{C}_{\mathrm{yy}}: 1.25$ in
$\mathrm{S}_{\mathrm{xx}}: 0.253 \mathrm{in}^{3}$
or $0.221 \mathrm{in}^{3}$

Syy: $0.321 \mathrm{in}^{3}$
$t=0.05$ "
Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02 From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
(eq 3.3.1.1-9)
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0^{*} 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.20 " / 0.05^{\prime \prime}\right)^{2}}=84.7 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25^{*} 0.221^{*} 30 \mathrm{ksi}=8.287 \mathrm{k}$ " Vertical loading Controls $1.25 * 0.321 * 30 \mathrm{ksi}=12.037 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.253 * 75 \mathrm{ksi}=18.975 \mathrm{k}$ " Vertical load Controls ultimate
$0.321 * 75 \mathrm{ksi}=24.075 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(8,287 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=9.291$,
concentrated $\rightarrow \mathrm{L}=8,287 * 5 /(334 \#)=124^{\prime \prime}=10^{\prime} 4 "$
cantilevered $\mathrm{L}=8,287 / 334=24.81$ "
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(18,975 / 12 \cdot 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=12.57^{\prime}=12^{\prime}-7^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=18,975^{*} 4 /(334 \#)=227.25$ "
cantilevered $\mathrm{L}=18,975 / 334=56.81 "=4^{\prime} 813 / 16 "$

GR 257 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$ $12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)(1.20 " / 0.05 ")^{2}}=53.5 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.253^{*} 43 \mathrm{ksi}=10.879 \mathrm{k}$ " Vertical loading Controls $0.321 * 43 \mathrm{ksi}=13.803 \mathrm{k}$ " Horizontal load

Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 10,879 / 12 \bullet 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=10.099^{\prime}=10^{\prime}-13 / 16 "$
concentrated $\rightarrow \mathrm{L}=0.9 * 10,879 * 5 /(334 \#)=146.57 "$
cantilevered $\mathrm{L}=0.9^{*} 10,879 / 334=29.315^{\prime \prime}=2^{\prime}-55 / 16^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 13,803 / 12 \bullet 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=11.376{ }^{\prime}=11^{\prime}-4.5^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 13,803 * 5 /(334 \#)=185.97 "$
cantilevered $\mathrm{L}=0.9^{*} 13,803 / 334=37.19$ "

Connector Sleeves

Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the $1-1 / 2$ " size.

CRL GR 307 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails

Area: 0.743 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.560 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.677 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.868$ in
r_{yy} : 0.955 in
$\mathrm{C}_{\mathrm{xx}}: 1.494$ in
$\mathrm{C}_{\mathrm{yy}}: 1.500$ in
$\mathrm{S}_{\mathrm{xx}}: 0.375 \mathrm{in}^{3}$
or $0.372 \mathrm{in}^{3}$
Syy: 0.451 in 3
$\mathrm{t}=0.0625$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad($ eq 3.3.1.1-9)
$\eta=0.50$ (from table A6a)
$\mathrm{k}=3(\mathrm{Is} / \mathrm{Ia})^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2 *} 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.45^{\prime} / 0.0625^{\prime \prime}\right)^{2}}=61.44 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.372 * 30 \mathrm{ksi}=13.95 \mathrm{k}$ " Vertical loading Controls
$1.25 * 0.451 * 30 \mathrm{ksi}=16.912 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.375 * 61.44 \mathrm{ksi}=23.04 \mathrm{k}$ " Vertical load Controls ultimate $0.451 * 61.44 \mathrm{ksi}=27.71 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load

$$
\begin{aligned}
\text { Vertical } \rightarrow \text { uniform } \rightarrow \mathrm{L} & =\left(13,905 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=12.035^{\prime} \\
\text { concentrated } \rightarrow \mathrm{L} & =13,905^{*} 5 /(334 \#)=208^{\prime \prime}=17^{\prime} 4^{\prime \prime} \\
\text { Cantilevered } \mathrm{L} & =13,905 / 334=41.63^{\prime \prime}
\end{aligned}
$$

Ultimate strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(23,040 / 12 \cdot 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=13.856^{\prime}=13^{\prime}-10^{1 / 4}{ }^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=23,040 * 4 /(334 \#)=275.93 "$
Cantilevered $\mathrm{L}=23,040 / 334=68.98^{\prime \prime}=5^{\prime}-9 "$

GR 307 SERIES CAP RAIL For Brass:

Alloy C26000, Cartridge Brass, $70 \% \mathrm{Cu}, 30 \% \mathrm{Zn}$
Cap rail fabricated from cold rolled sheet
$\mathrm{F}_{\mathrm{yu}} \geq 43 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$ $12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.49$
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.34$
$\mathrm{E}_{0}=16.9 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2 *} 4.0 * 0.49 * 16.9 \times 10^{3} \mathrm{ksi}}{12\left(1-0.34^{2}\right)\left(1.45^{\prime \prime} / 0.05^{\prime \prime}\right)^{2}}=36.628 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.372 * 43 \mathrm{ksi}=15.996 \mathrm{k}$ " Vertical loading
$0.451 * 43 \mathrm{ksi}=19.393 \mathrm{k}$ " Horizontal load
or $\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.375^{*} 36.628 \mathrm{ksi}=13.736 \mathrm{k}$ " Vertical load Controls
$0.451 * 36.628 \mathrm{ksi}=16.519 \mathrm{k}$ " Horizontal load Controls
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 13,736 / 12 \bullet 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=11.348^{\prime}=11^{\prime}-43 / 16^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=0.9 * 13,736 * 5 /(334 \#)=185.07 "$
cantilevered $\mathrm{L}=0.9^{*} 13,736 / 334=37.0^{\prime \prime} 3^{‘}-1$ "
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(0.9^{*} 16,519 / 12 \cdot 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=12.444^{\prime}=12^{\prime}-51 / 3 "$
concentrated $\rightarrow \mathrm{L}=0.9 * 16,519 * 5 /(334 \#)=222.56$ "
cantilevered $\mathrm{L}=0.9^{*} 16,519 / 334=44.51^{\prime \prime}=3^{\prime} 81 / 2^{\prime \prime}$

Connector Sleeves

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

ALUMINUM CAP RAILS

Aluminum cap rail strength evaluated in accordance with the 2005 Aluminum Design Manual, Part I-A. Allowable Stress Design

GR19 Aluminum

Area: 0.966 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.242 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.328 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.501$ in
$\mathrm{r}_{\mathrm{yy}}: 0.583$ in
$\mathrm{C}_{\mathrm{xx}}: 0.948$ in
Cyy: 0.950 in
$\mathrm{S}_{\mathrm{xx}}: 0.255 \mathrm{in}^{3}$
or $0.254 \mathrm{in}^{3}$

$S_{y y}: 0.345 \mathrm{in}^{3}$
$\mathrm{t}=0.125$ "
Allowable stresses ADM Table 2-24 6063-T6 Aluminum
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\frac{1.9 "}{0.125}=15.2$ line 16.1
$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(15.2)^{1 / 2}=16.18 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=16.18^{\mathrm{ksi}} \bullet(0.345)=5,582^{\# \prime}$
For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(0.254 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=4,572 " \#$ or
top stress: $\quad=\left(0.255 \mathrm{in}^{3}\right)^{*} 16.45 \mathrm{ksi}=4,195^{\prime \#}$ controls
Vertical load will determine maximum allowable span
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& \mathrm{S}=\left[4,195^{\prime * *} * /\left(50 \mathrm{plf}^{*} * 12^{\prime \prime}\right)\right]^{1 / 2}=7.48^{\prime} \text { or } \\
& S=4,195^{\prime \# \# *} 4 / 200^{\#}=83.9 \text { inches }=7^{\prime} \text { Controls }
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=4,195 / 200=20.975^{\prime \prime}
$$

GR25 Aluminum

Area: 1.206 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.622 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.712 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.718$ in
r_{yy} : 0.768 in
$\mathrm{C}_{\mathrm{xx}}: 1.269$ in
$\mathrm{C}_{\mathrm{yy}}: 1.25$ in
$\mathrm{S}_{\mathrm{xx}}: 0.490 \mathrm{in}^{3}$
or $0.505 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}: 0.569 \mathrm{in}^{3}$
$\mathrm{t}=0.125$ "
Allowable stresses
ADM Table 2-24

6063-T6 Aluminum
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\underset{0.125}{2.5^{\prime \prime}}=20$ line 16.1
$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(20)^{1 / 2}=15.84 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=15.84^{\mathrm{ksi}} \bullet(0.569)=9,013^{\# \prime}$

For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(0.490 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=8,820 " \#$ or
top stress: $\quad=\left(0.505 \mathrm{in}^{3}\right)^{*} 15.84 \mathrm{ksi}=7,999$ "\# controls
Vertical load will determine maximum allowable span
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[7,999^{\prime \#} \# 8 /\left(50 \mathrm{plf}^{*} * 12^{\prime \prime}\right)\right]^{1 / 2}=10.32^{\prime} \text { or } \\
& S=7,999^{\prime \prime \# *} 4 / 200^{\#}=160 \text { inches }=13^{\prime} 4^{\prime \prime}
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=7,999 / 200=40^{\prime \prime}
$$

GR30 Aluminum

Area: 1.407 sq in
$\mathrm{I}_{\mathrm{xx}}: 1.160 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.222 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.908$ in
$\mathrm{r}_{\mathrm{yy}}: 0.932$ in
$\mathrm{C}_{\mathrm{xx}}: 1.569$ in
$\mathrm{C}_{\mathrm{yy}}: 1.50$ in
$\mathrm{S}_{\mathrm{xx}}: 0.740 \mathrm{in}^{3}$
or $0.811 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}: 0.815 \mathrm{in}^{3}$
$\mathrm{t}=0.125$ "
Allowable stresses ADM Table 2-24 6063-T6 Aluminum
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\frac{3 "}{\frac{3 " 125}{0.12}}=24$ line 16.1

$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(24)^{1 / 2}=15.59 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=15.59^{\mathrm{ksi}} \bullet(0.815)=12,710^{\# \prime}$

For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(0.740 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=13,320{ }^{\prime \#}$ or
top stress: $\quad=\left(0.811 \mathrm{in}^{3}\right)^{*} 15.59 \mathrm{ksi}=12,643^{\prime \prime}$ controls
Vertical load will determine maximum allowable span max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[12,643^{\prime \prime} \# * 8 /\left(50 \text { plf }^{*} 12^{\prime \prime \prime}\right)\right]^{1 / 2}=12.98^{\prime} \text { or } \\
& S=12,643^{\prime \prime * *} 4 / 200^{\#}=253 \text { inches }=21^{\prime} 1 "
\end{aligned}
$$

For cantilevered case:

$$
S_{C}=12,643 / 200=63.215 "
$$

GR35 Aluminum

Area: 1.606 sq in
$\mathrm{I}_{\mathrm{xx}}: 1.942 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.943 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 1.10$ in
$\mathrm{r}_{\mathrm{yy}}: 1.10$ in
$\mathrm{C}_{\mathrm{xx}}: 1.856$ in
$\mathrm{C}_{\mathrm{yy}}: 1.750$ in
$\mathrm{S}_{\mathrm{xx}}: 1.046 \mathrm{in}^{3}$
or $1.181 \mathrm{in}^{3}$
Syy: 1.111 in 3
$\mathrm{t}=0.125$ "
Allowable stresses
6063-T6 Aluminum
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\underline{3.5^{\prime \prime}}=28$
0.125
line 16.1
ADM Table 2-24

$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(28)^{1 / 2}=15.36 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=15.36^{\mathrm{ksi}} \bullet(1.111)=17,067^{\text {\# }}$ '
For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(1.046 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=18,828{ }^{\prime \prime}$ or
top stress:

$$
=\left(1.181 \mathrm{in}^{3}\right) * 15.36 \mathrm{ksi}=18,140^{\prime \prime} \#
$$

Horizontal load will determine maximum allowable span
max span 50 plf horizontal load or 200 lb concentrated load
$S=\left[17,067^{\prime \prime * *} 8 /\left(50 \mathrm{plf}^{*} 12 " /{ }^{\prime}\right)\right]^{1 / 2}=15.08^{\prime}$ or $S=17,067^{\prime \prime * *} 4 / 200^{\#}=341$ inches $=28^{\prime} 5^{\prime \prime}$
For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=17,067 / 200=85.335 "
$$

GROV4 Aluminum

Area: 1.466 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.950 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 2.078 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.805$ in
r_{yy} : 1.190 in
$\mathrm{C}_{\mathrm{xx}}: 1.286$ in
$\mathrm{C}_{\mathrm{yy}}: 2.00$ in
$\mathrm{S}_{\mathrm{xx}}: 0.739 \mathrm{in}^{3}$
or $0.783 \mathrm{in}^{3}$
Syy: $1.039 \mathrm{in}^{3}$
$\mathrm{t}=0.125$ "

Allowable stresses ADM Table 2-24 6063-T6 Aluminum
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\underset{0.125}{2.5 "}=20$ horizontal load or $4 / 0.125=32$ for vertical loads
line 16.1
$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(20)^{1 / 2}=15.84 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=15.84^{\mathrm{ksi}} \bullet(1.039)=15,245^{\text {\#' }}$
$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(32)^{1 / 2}=15.14 \mathrm{ksi}$
For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(0.739 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=13,302^{\prime}{ }^{\#}$ or
top stress: $\quad=\left(0.783 \mathrm{in}^{3}\right)^{*} 15.14 \mathrm{ksi}=11,855^{\prime \#}$
Vertical load will determine maximum allowable span
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& \left.S=\left[11,855^{\prime \prime * *} 8 /\left(50 \mathrm{plf}^{*} 12^{\prime \prime \prime}\right)^{\prime}\right)\right]^{1 / 2}=12.57^{\prime} \text { or } \\
& S=11,855^{\prime * * * 4 / 200^{\#}=237 \text { inches }=19^{\prime} 9^{\prime \prime}}
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=11,885 / 200=59.425 "
$$

Sleeve connectors and corners can be inferred from calculations for GR15 rails.

GR307M Aluminum

Area: 1.412 sq in
$\mathrm{I}_{\mathrm{xx}}: 1.078 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.258 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.874$ in
$\mathrm{r}_{\mathrm{yy}}: 0.944$ in
$\mathrm{C}_{\mathrm{xx}}: 1.520$ in
$\mathrm{C}_{\mathrm{yy}}: 1.500$ in
$\mathrm{S}_{\mathrm{xx}}: 0.709 \mathrm{in}^{3}$ or 0.782 in 3
$S_{y y}: 0.839$ in 3
$\mathrm{t}=0.125$ "
Allowable stresses
6063-T6 Aluminum

$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=\frac{1.5 "}{0.125}=12$
line 16.1
$\mathrm{F}_{\mathrm{Cb}}=18.5-0.593(20)^{1 / 2}=16.45 \mathrm{ksi}$
$\mathrm{M}_{\text {all horiz }}=16.54^{\mathrm{ksi}} \bullet(0.839)=13,877^{\text {\#" }}$
For vertical load \rightarrow bottom in tension top comp.
$\mathrm{F}_{\mathrm{bt}}=18 \mathrm{ksi}$
bottom stress: $\mathrm{M}_{\text {all vert }}=\left(0.709 \mathrm{in}^{3}\right) \cdot 18 \mathrm{ksi}=12,762^{\cdots}$ \# or
top stress:

$$
=\left(0.782 \mathrm{in}^{3}\right)^{*} 16.45 \mathrm{ksi}=12,864^{\prime \#}
$$

Vertical load controls span:
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[12,762^{\prime \# * *} 10 /\left(50 \mathrm{plf}^{*} 12^{" \prime}\right)\right]^{1 / 2}=14.584^{\prime} \text { or } \\
& \mathrm{S}=12,762^{\prime \# *} / 200^{\#}=319 \text { inches }
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=12,762 / 200=63.81 "
$$

Sleeve connectors and corners can be inferred from calculations for GR15 rails.

Welded Aluminum Corners and Splices:

When the 6063-T6 aluminum alloy is welded the tempering is lost within the area of the weld affected zone reducing the allowable stress in the tubes to 5.5 ksi within 1 " of the weld. This reduces bending strength to 30% of the bending strength for the unaffected cap rail.

All welds shall be located as close as possible to a zero moment inflection point or at a location where the weld may be assumed to behave as a hinge without causing an unstable condition.

EDWARD C. ROBISON, PE, SE

Stabilizing End Cap

Used to attach cap rail or hand rail to wall or post to provide one anchor point.

End cap sized to match rail:
Maximum design load to End Cap:
200\# concentrated load
For distributed load $=50 \mathrm{plf} *$ light size $/ 2$
$\mathrm{R}=10$ '*50plf $/ 2=250 \#$
(from broken end light) (250\# maximum)
Cap thickness is $1 / 8$ "
Anchor size is $1 / 4$ "
Bearing pressure on end cap:

$\mathrm{F}_{\mathrm{B}}=250 \# /(0.25 * 0.125)=8,000 \mathrm{psi}$
This is significantly below the allowable bearing stresses for all material types used:

$$
\begin{aligned}
& 304 \mathrm{SS}=2 * 0.65 * 75 \mathrm{ksi} / 1.6=60.92 \mathrm{ksi} \\
& 6063 \mathrm{~T} 6 \mathrm{AL}=31 \mathrm{ksi} \\
& \text { Brass }=2 * 0.65 * 43 \mathrm{ksi} / 1.6=34.9 \mathrm{ksi}
\end{aligned}
$$

Anchor strength:
$1 / 4$ " wood screw to wood, $\mathrm{G}>0.42$
Use wood screw style - ANSI B18.6.1 rolled thread.
$Z^{\prime}=Z^{*} C_{d}=151 \# * 1.33=200 \#$, NDS Table 11M-11 gage edge plate and $\# 14$ screw
To wood requires maximum light size of 8 ,
$\mathrm{R}=50 \mathrm{plf} * 8^{\prime} / 2=200 \#$ (200\# load to end cap)

To Concrete or CMU:

$1 / 4$ " Wedge-Bolt ${ }^{\circledR}$ screw in anchor
$\mathrm{V}=260 \#$ (ESR-1678) 2,000 psi concrete
STABILIZING END CAP MATCHED TO TOP RAIL OR HAND RAIL

Wood Cap Rails

Composite rail made of select clear wood bonded with aluminum channel.
Determine equivalent section:
$\mathrm{n}=\mathrm{E}_{\mathrm{a}} / \mathrm{E}_{\mathrm{w}}$
$\mathrm{n}=10,100 / 1,400=7.2$

for aluminum channel thickness $=0.1$ "
equivalent $\operatorname{wood}=7.2 * 2 * 0.1=1.44$ "
maxim notch width $=0.75^{\prime \prime}+2^{*} 0.1=0.95^{\prime \prime}<1.44^{\prime \prime}$ therefore can assume that section is equivalent to a solid round .
Wood stress from National Design Specification for Wood Construction Supplement, 2001 edition, mixed oak
$\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}} * \mathrm{C}_{\mathrm{D}} * \mathrm{C}_{\mathrm{F}} * \mathrm{C}_{\mathrm{s}}=1150 \mathrm{psi}^{*} 1.33 * 1.5 * 1.18=2,707 \mathrm{psi}$
Three rail sizes:
$2^{\prime \prime}$ dia: $S=\pi 2^{3 / 32}=0.786$ in 3
$\mathrm{M}_{\mathrm{a}}=0.786 * 2,707 \mathrm{psi}=2,128 \#$ "
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[2,128^{\# *} 8 /\left(50 \mathrm{plf}^{*} 12^{\prime \prime \prime}\right)\right]^{1 / 2}=5.33^{\prime}=5^{\prime}-4 " \text { or } \\
& S=2,128^{\prime \# *} 4 / 200^{\#}=42.56^{\prime \prime} \text { inches }=3^{\prime}-6 "
\end{aligned}
$$

For cantilevered case:

$$
S_{\mathrm{C}}=2,128 / 200=10.64 "
$$

$2.5^{\prime \prime}$ dia: $S=\pi 2.5^{3} / 32=1.534 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{a}}=1.534 * 2,707 \mathrm{psi}=4,153 \#$ "
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& \left.\mathrm{S}=\left[4,153^{\prime \prime \# *} 8 /\left(50 \mathrm{plf} * 12^{\prime \prime}\right)^{\prime}\right)\right]^{1 / 2}=7.44^{\prime}=7^{\prime} 5^{\prime \prime} \text { or } \\
& \mathrm{S}=4,153^{\prime \prime * *} 4 / 200^{\#}=83^{\prime \prime} \text { inches }=6^{\prime}-11^{\prime \prime}
\end{aligned}
$$

For cantilevered case:

$$
S_{C}=4,153 / 200=20.765^{\prime \prime}
$$

3.0 " dia: $S=\pi 3^{3} / 32=2.65$ in 3
$\mathrm{M}_{\mathrm{a}}=2.65^{*} 2,707 \mathrm{psi}=7,174 \#^{\prime \prime}$
max span 50 plf horizontal load or 200 lb concentrated load $\mathrm{S}=\left[7,174^{\prime " \# *} 8 /\left(50 \mathrm{plf} * 12^{\prime \prime}\right)\right]^{1 / 2}=9.78^{\prime}=9^{\prime} 91 / 4^{\prime \prime}$ or $S=7,174^{\prime * * *} 4 / 200^{\#}=143.5 "$ inches $=11^{\prime}-11.5 "$
For cantilevered case:

$$
S_{C}=7,174 / 200=35.87 "
$$

Square Stainless Steel Cap Rails

GRS15/GRSC15 CAP RAIL

Area: 0.4009 sq in
Perim: 15.2514 in
$\mathrm{I}_{\mathrm{xx}}: 0.0961 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.1518$ in 4
$\mathrm{r}_{\mathrm{xx}}: 0.4895$ in
$\mathrm{r}_{\mathrm{yy}}: 0.5360$ in
$\mathrm{C}_{\mathrm{xx}}: 0.77125$ in
$C_{y y}: 0.7500$ in
$\mathrm{S}_{\mathrm{xx}}: 0.1246$ in 3 or $0.1319 \mathrm{in}^{3}$
$S_{\text {yy: }} 0.1534$ in 3
$\mathrm{t}=0.05 \mathrm{in}$

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$, for A 304 stainless steel sheet used to form the rail. $\varnothing=$ 1.0. Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{2}$
(eq 3.3.1.1-9)

$$
12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}
$$

$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.0961 / 0.1518)^{1 / 3}+1=3.58 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} * 3.58^{*} 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.40 " / 0.05^{\prime \prime}\right)^{2}}=54.6 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
Use reserve capacity method $(1.25 * 30=37.5 \mathrm{ksi} \leq 54.6 \mathrm{ksi})$ okay
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.1246 * 30 \mathrm{ksi}=4,672.5$ "\# Vertical loading Controls

$$
\mathrm{M}_{\mathrm{nH}}=1.25 * 0.1534 * 30 \mathrm{ksi}=5,752.5 \prime \text { " Horizontal load }
$$

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(4,672.5 / 12^{*} 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=6.977^{\prime}=6^{\prime}-1111 / 16^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=4,672.5^{*} 5 /\left(1.6^{*} 200 \#\right)=73.0^{\prime \prime}=6^{\prime}-1 "$

Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(5,752.5 / 12 * 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.740{ }^{\prime}=7^{\prime}-7 / 8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=5,752.5 * 5 /(1.6 * 200 \#)=89.89 "$
Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=4,672.5 /\left(1.6^{* 200}\right)=14.6^{\prime \prime}=1^{\prime}-29 / 16
$$

GRS20/ GRSC20 CAP RAIL

Area: 0.5504 sq in
Perim: 21.2518 in
$\mathrm{I}_{\mathrm{xx}}: 0.2519 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.2726$ in 4
$\mathrm{r}_{\mathrm{xx}}: 0.6766$ in
$\mathrm{r}_{\mathrm{y}}: 0.7038$ in
$\mathrm{C}_{\mathrm{xx}}: 1.0322$ in
$\mathrm{C}_{\mathrm{yy}}: 1.000$ in
$\mathrm{S}_{\mathrm{xx}}: 0.2441 \mathrm{in}^{3}$ or $0.2603 \mathrm{in}^{3}$
$S_{y y}: 0.2726$ in 3
$\mathrm{t}=0.05$ in
Allowable stresses:

For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$, for A304 stainless steel sheet used to form the rail. $\varnothing=$ 1.0. Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{2(12}$
(eq 3.3.1.1-9)
$12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.2519 / 0.2726)^{1 / 3}+1=3.58 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.58 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.90 " / 0.05^{\prime \prime}\right)^{2}}=54.6 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
Use reserve capacity method ($1.25 * 30=37.5 \mathrm{ksi} \leq 54.6 \mathrm{ksi}$) okay
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.2519 * 30 \mathrm{ksi}=9,446$ "\# Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=1.25 * 0.2726^{*} 30 \mathrm{ksi}=10,222.5$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(9,446 / 12^{*} 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=9.919^{\prime}=9^{\prime}-11^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=9,446 * 5 /(1.6 * 200 \#)=165.0 "$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(10,222.5 / 12 * 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=10.320$ ' $=10^{\prime}-37 / 8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=10,222.5 * 5 /(1.6 * 200 \#)=178.58$ "
Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=9,446 " \# /\left(1.6^{*} 200\right)=29.52 "=2^{\prime}-51 / 2 "
$$

C.R. Laurence GRS Top Rails and Handrails 07/06/2020

Page 35 of 71

GRS25 CAP RAIL

Area: 0.6516 sq in
Perim: 25.257 in
$\mathrm{I}_{\mathrm{xx}}: 0.4946 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.5141 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.8712$ in
$\mathrm{r}_{\mathrm{yy}}: 0.8883$ in
$\mathrm{C}_{\mathrm{xx}}: 1.2864$ in
$C_{y y}: 1.250$ in
$\mathrm{S}_{\mathrm{xx}}: 0.3825 \mathrm{in}^{3}$ or $0.4075 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}: 0.4113 \mathrm{in}^{3}$
$\mathrm{t}=0.05$ in

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$, for A304 stainless steel sheet used to form the rail. $\varnothing=$ 1.0. Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{2(1)}$
(eq 3.3.1.1-9)
$12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.50$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{S}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.4946 / 0.5141)^{1 / 3}+1=3.96 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.96^{*} 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(2.40 " / 0.05^{\prime \prime}\right)^{2}}=20.97 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
Check reserve capacity method
Check based on compression distortions permitted: $\mathrm{f}_{\mathrm{b}}=1.2 * 20.97 \mathrm{ksi}=25,164 \mathrm{psi}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{f}_{\mathrm{b}}=0.3825^{*} 25,164 \mathrm{psi}=9,625^{\prime \prime} \#$ Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=0.4113 * 25,164 \mathrm{psi}=10,350$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(9,625 / 12 * 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=10.013^{\prime}=10^{\prime}-1 / 8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=9,625 * 5 /(1.6 * 200 \#)=150.39$ "
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(10,350 / 12^{*} 10 /(1.6 * 50 \mathrm{plf})\right)^{1 / 2}=10.383 \prime=10^{\prime}-45 / 8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=10,350 * 5 /(1.6 * 200 \#)=161.72$ "
Cantilevered section:
For 200\# concentrated load:

$$
L=9,625^{\prime \prime} \# /\left(1.6^{*} 200\right)=30.08^{\prime \prime}=2^{\prime}-6^{\prime \prime}
$$

SRF15 CAP RAIL

Area: 0.366 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.09363 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.1299 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.5058$ in
$\mathrm{r}_{\mathrm{yy}}: 0.5958$ in
$\mathrm{C}_{\mathrm{xx}}: 0.843$ in
$\mathrm{C}_{\mathrm{yy}}: 0.7875$ in
$\mathrm{S}_{\mathrm{xx}}: 0.1111 \mathrm{in}^{3}$ Bottom or $0.12799 \mathrm{in}^{3}$ Top
$S_{y y}: 0.1554$ in 3
$\mathrm{t}=0.053$ in
Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$, for A 304
stainless steel sheet used to form the rail. $\varnothing=1.0$.
Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{}$
(eq 3.3.1.1-9)
$12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.09363 / 0.1299)^{1 / 3}+1=3.69 \leq$
4.0
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.69 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.385^{\prime \prime} / 0.0475^{\prime \prime}\right)^{2}}=52.96 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$

Use reserve capacity method $(1.25 * 30=37.5 \mathrm{ksi} \leq 54.6 \mathrm{ksi})$ okay
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.1111 * 30 \mathrm{ksi}=4,166$ "\# Vertical loading
Controls

$$
\mathrm{M}_{\mathrm{nH}}=1.25^{*} 0.1554 * 30 \mathrm{ksi}=5,828 " \# \text { Horizontal load }
$$

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(4,166 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=6.5876^{\prime}=6^{\prime}-7^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=4,166^{*} 5 /\left(1.6^{*} 200 \#\right)=65.09 \prime=5^{\prime}-5^{\prime \prime}$

$$
\begin{aligned}
\text { Horizontal } \rightarrow \text { uniform } & \rightarrow \mathrm{L}=\left(5,828 / 12 * 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.7916^{\prime}=7^{\prime}-91 / 2^{\prime \prime} \\
\text { concentrated } & \rightarrow \mathrm{L}=5,828 * 5 /\left(1.6^{*} 200 \#\right)=91.06^{\prime \prime}
\end{aligned}
$$

Cantilevered section:
For 200\# concentrated horizontal load:

$$
\mathrm{L}=5,828 /\left(1.6^{* 200}\right)=18.2^{\prime \prime}=1^{\prime}-63 / 16^{\prime \prime}
$$

SRF20 CAP RAIL

Area: 0.5074 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.2201 \mathrm{in}^{4} \mathrm{I}_{\mathrm{yy}}: 0.2870 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.6587$ in $\quad \mathrm{r}_{\mathrm{yy}}: 0.7521 \mathrm{in}$
$\mathrm{C}_{\mathrm{xx}}: 1.063$ in from bottom $\mathrm{C}_{\mathrm{yy}}: 1.0$ in
$\mathrm{S}_{\mathrm{xx}}: 0.2071 \mathrm{in}^{3}$ or $0.2349 \mathrm{in}^{3}$
Syy: $0.2870 \mathrm{in}^{3}$
$\mathrm{t}=0.047 \mathrm{in}$
Allowable stresses:
For stainless steel options: design using SEI/
ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$, for A304 stainless steel sheet used to form the rail. $\varnothing=1.0$. Ultimate strength not calculated because of shape.

$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.2201 / 0.2870)^{1 / 3}+1=3.75 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.75^{*} 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.87 " / 0.047^{\prime \prime}\right)^{2}}=28.9 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{cr}}=0.2071 * 28.9 \mathrm{ksi}=5,985 " \#$ Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=0.287 * 28.9 \mathrm{ksi}=8,294$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(5,985 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.896^{\prime}$

$$
\text { concentrated } \rightarrow \mathrm{L}=5,985^{*} 5 /\left(1.6^{*} 200 \#\right)=93.5 \prime=7 \prime-9.5 "
$$

Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=(8,294 / 12 * 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=9.295$,

$$
\text { concentrated } \rightarrow \mathrm{L}=8,294 * 5 /(1.6 * 200 \#)=129.59 "
$$

Cantilevered section horizontal load
For 200\# concentrated load:

$$
\mathrm{L}=5,985 /(1.6 * 200)=18.7 "
$$

For vertical load:

$$
\mathrm{L}=8,294 /(1.6 * 200)=25.9 "
$$

GRLC10 CAP RAIL

Area: 0.404 sq in
Perim: 7.231 in
$\mathrm{I}_{\mathrm{xx}}: 0.06997 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.06530 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4162$ in
$\mathrm{r}_{\mathrm{yy}}: 0.4021$ in
$\mathrm{C}_{\mathrm{xx}}: 0.7875$ in
$C_{y y}: 0.50$ in
$\mathrm{S}_{\mathrm{xx}}: 0.08885 \mathrm{in}^{3}$ or $0.13328 \mathrm{in}^{3}$
Syy: 0.13059 in 3
$\mathrm{t}=0.1177$ in (11 ga)

Allowable stresses:
$\mathrm{F}_{\mathrm{y}}=48 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=94 \mathrm{ksi}$, for A304 stainless steel sheet
mill certification, used to form the rail. $\varnothing=1.0$ Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad($ eq 3.3.1.1-9)
$\eta=0.49$ (from SEI/ASCE 8-02 table A8a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.06997 / 0.06530)^{1 / 3}+1=4.08 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2 *} 4.0^{*} 0.49 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.1948^{\prime \prime} / 0.1177 "\right)^{2}}=464$ ksi but $\leq \mathrm{F}_{\mathrm{y}}$
Use reserve capacity method
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.08885 * 48 \mathrm{ksi}=5,331 " \#$ Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=1.25^{*} 0.13059 * 48 \mathrm{ksi}=7,835$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(5,331 / 12^{*} 10 /\left(1.6^{*} 50 \text { plf }\right)\right)^{1 / 2}=7.452^{\prime}=7^{\prime}-57 / 16 "$
concentrated $\rightarrow \mathrm{L}=5,331 * 5 /\left(1.6^{*} 200 \#\right)=83.3 "=6^{\prime}-11^{1 / 4 \prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(7,835 / 12 * 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=9.034^{\prime}=9^{\prime}-3 / 8^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=7,835 * 5 /(1.6 * 200 \#)=122.42$ "

Cantilevered section:
For 200\# concentrated load:

$$
L=7,835 " \# /\left(1.6^{*} 200\right)=24.48^{\prime \prime}=2^{\prime}-1 / 2 "
$$

GRL10 CAP RAIL

Area: 0.3949 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.06763 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.06324 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4139$ in
$\mathrm{r}_{\mathrm{yy}}: 0.4002$ in
$\mathrm{C}_{\mathrm{xx}}: 0.7760$ in
$\mathrm{C}_{\mathrm{yy}}: 0.50$ in
$\mathrm{S}_{\mathrm{xx}}: 0.08716 \mathrm{in}^{3}$ or $0.12606 \mathrm{in}^{3}$

$S_{y y}: 0.1265$ in 3
$\mathrm{t}=0.1177$ in (11 ga)
Allowable stresses:
$\mathrm{F}_{\mathrm{y}}=48 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=94 \mathrm{ksi}$, for A304 stainless steel sheet mill certification, used to form the rail. $\varnothing=$ 1.0 Ultimate strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad($ eq 3.3.1.1-9)
$\eta=0.49$ (from SEI/ASCE 8-02 table A8a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.06763 / 0.06324)^{1 / 3}+1=4.07 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0^{*} 0.49 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.1198^{\prime} / 0.1177^{\prime \prime}\right)^{2}}=464$ ksi but $\leq \mathrm{F}_{\mathrm{y}}$
Use reserve capacity method
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.08716 * 48 \mathrm{ksi}=5,230$ "\# Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=1.25^{*} 0.1265^{*} 48 \mathrm{ksi}=7,590$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(5,230 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.381^{\prime}=7^{\prime}-47 / 16^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=5,230 * 5 /\left(1.6^{*} 200 \#\right)=81.72 "=6 \prime-911 / 16^{\prime \prime}$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(7,590 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=8.892^{\prime}=9^{\prime}-1011 / 16^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=7,590 * 5 /(1.6 * 200 \#)=118.59 "$
Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=7,590 " \# /\left(1.6^{*} 200\right)=23.72 "=1^{\prime}-1111 / 16^{\prime \prime}
$$

GRL107/GRLC107 CAP RAIL
$11 / 4$ " x $15 / 16$ " x 11 Ga
Area: 0.4463 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.07768 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{y}}: 0.1122$ in 4
r_{xx} : 0.417 in
$\mathrm{r}_{\mathrm{yy}}: 0.501$ in
$\mathrm{S}_{\mathrm{xx}}: 0.0957 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}: 0.1793 \mathrm{in}^{3}$

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=45 \mathrm{ksi}$ for $1 / 16$ hard A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{2}$ (eq 3.3.1.1-9)
$\eta=0.49$ (from table A8a)
$\mathrm{k}=3(\mathrm{Is} / \mathrm{Ia})^{1 / 3}+1<4.0=3(0.07768 / 0.1122)^{1 / 3}+1=3.6547$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.6547 * 0.49 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.0625 " / 0.125^{\prime \prime}\right)^{2}}=650 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
$\mathrm{M}_{\mathrm{n}}=\mathrm{S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=0.0957 * 45 \mathrm{ksi}=4,307 \mathrm{k}$ " Vertical loading $0.1793 * 45 \mathrm{ksi}=8,069 \mathrm{k}$ " Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or 200 lb concentrated load rail continuous one end
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(4,307 \#^{\prime \prime} / 12 \cdot 10 /(1.6 * 50 \text { plf })\right)^{1 / 2}=6.698^{\prime}$
concentrated $\rightarrow \mathrm{L}=4,307 *(16 / 3) /(1.6 * 200 \#)=71.78 "$
cantilevered $\rightarrow \mathrm{L}=4,307 * /\left(1.6^{*} 200 \#\right)=13.46 "$ $\rightarrow \mathrm{L}=\left(4,307 \#^{\prime \prime} / 12 \cdot 2 /(1.6 * 50 \mathrm{plf})\right)^{1 / 2}=2.995^{\prime}$

Horizontal $\rightarrow \quad$ uniform $\rightarrow \mathrm{L}=\left(8,069 \# ' / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=9.168^{\prime}$ controls
concentrated $\rightarrow \mathrm{L}=8,069 *(16 / 3) /(1.6 * 200 \#)=134.48$ "
cantilevered $\rightarrow \mathrm{L}=8,069 * /\left(1.6^{*} 200 \#\right)=25.2$ "
$\left.\rightarrow \mathrm{L}=8,069 / 12 \cdot 2 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=4.100^{\prime}$

L10 CAP RAIL

Area: 0.4653 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.09776 \mathrm{in}^{4} ; \quad \mathrm{I}_{\mathrm{yy}}: 0.1572 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4584$ in ; $\quad \mathrm{r}_{\mathrm{yy}}: 0.5813$ in
$\mathrm{C}_{\mathrm{xx}}: 0.7185$ in ; $\quad \mathrm{C}_{\mathrm{yy}}: 0.890$ in
$\mathrm{S}_{\mathrm{xx}}: 0.1098 \mathrm{in}^{3}$ or $0.1787 \mathrm{in}^{3}$
$S_{y y}: 0.209$ in 3
$\mathrm{t}=0.1177$ in (11 ga)
Allowable stresses:
$F_{y} \geq 45 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=\geq 90 \mathrm{ksi}$, for A304 stainless steel sheet mill certification, used to form the rail. $\varnothing=1.0$ Ultimate
 strength not calculated because of shape.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} /)^{2}} \quad($ eq 3.3.1.1-9)

$$
12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}
$$

$\eta=0.49$ (from SEI/ASCE 8-02 table A8a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1=3(0.1572 / 0.09776)^{1 / 3}+1=3.51 \leq 4.0$
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{ksi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 3.51 * 0.49 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.188 " / 0.1177^{\prime \prime}\right)^{2}}=412 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{y}}$
Use reserve capacity method
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.08716 * 48 \mathrm{ksi}=5,230$ "\# Vertical loading Controls $\mathrm{M}_{\mathrm{nH}}=1.25^{*} 0.1265^{*} 48 \mathrm{ksi}=7,590$ "\# Horizontal load

Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(5,230 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.381^{\prime}=7^{\prime}-47 / 16^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=5,230 * 5 /\left(1.6^{*} 200 \#\right)=81.72 "=6^{\prime}-911 / 16^{\prime \prime}$

Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(7,590 / 12^{*} 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=8.892^{\prime}=9^{\prime}-1011 / 16^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=7,590 * 5 /(1.6 * 200 \#)=118.59 "$

Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=7,590 " \# /\left(1.6^{*} 200\right)=23.72 "=1^{\prime}-1111 / 16^{\prime \prime}
$$

CRL GRRF15 SERIES CAP RAIL
Used as the top rail on glass balustrade panel guardrails.
Area: 0.269 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.03726 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.07091 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.3721$ in
$\mathrm{r}_{\mathrm{yy}}: 0.5134$ in
$\mathrm{C}_{\mathrm{xx}}: 0.731$ in $\mathrm{C}_{\mathrm{yy}}: 0.75$ in
$\mathrm{S}_{\mathrm{xx}}: 0.05176 \mathrm{in}^{3}$ or $0.0677 \mathrm{in}^{3}$
Syy: 0.08538 in 3
$\mathrm{t}=0.053$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}} \quad(\mathrm{eq} 3.3 .1 .1-9)$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.75^{\prime \prime} / 0.05^{\prime \prime}\right)^{2}}=216 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.05176 * 30 \mathrm{ksi}=1,941$ "\# Vertical loading Controls
$1.25 * 0.08538^{*} 30 \mathrm{ksi}=3,202$ "\# Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.05176^{*} 75 \mathrm{ksi}=3,882$ "\# Vertical load Controls Ultimate $0.08538 * 75 \mathrm{ksi}=6,404$ " $\#$ Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(1,941 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=6.1509^{\prime}$
concentrated $\rightarrow \mathrm{L}=1,941 * 5 /\left(1.6^{*} 200 \#\right)=56.75 "=4^{\prime} 83 / 4^{\prime \prime}$
cantilevered $\mathrm{L}=1,941 /\left(1.6^{*} 200\right)=61 / 16 "$
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(3,882 / 12 \bullet 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=5.688^{\prime}=5^{\prime}-81 / 4^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=3,882^{*} 4 /(320 \#)=48.5^{\prime \prime}=4^{\prime} 01 / 2^{\prime \prime}$
cantilevered $\mathrm{L}=3,882 / 320=121 / 8$ "

Connector Sleeves and Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the $1-1 / 2$ " size.

CRL GRRF20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails.
Area: 0.3765 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.0909 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.1509 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4914$ in
$\mathrm{r}_{\mathrm{yy}}: 0.6332$ in
$\mathrm{C}_{\mathrm{xx}}: 0.949$ in $\mathrm{C}_{\mathrm{yy}}: 0.9375$ in
$\mathrm{S}_{\mathrm{xx}}: 0.09689 \mathrm{in}^{3}$ or $0.123 \mathrm{in}^{3}$
Syy: 0.123 in 3
$\mathrm{t}=0.053$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE 8-02
From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(0.95^{\prime \prime} / 0.05^{\prime \prime}\right)^{2}}=135.2 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25^{*} 0.09689^{*} 30 \mathrm{ksi}=3,632$ "\# Vertical loading Controls
$1.25 * 0.123 * 30 \mathrm{ksi}=4,613$ "\# Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.09689 * 75 \mathrm{ksi}=7,267$ " $\#$ Vertical load Controls Ultimate
$0.123^{*} 75 \mathrm{ksi}=9,225^{\prime \prime}$ \# Horizontal load
Determine allowable rail spans (ignoring deflection)
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(3,632 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=6.1509^{\prime}$
concentrated $\rightarrow \mathrm{L}=3,632 * 5 /\left(1.6^{*} 200 \#\right)=56.75^{\prime \prime}=4^{\prime} 83 / 4$ "
cantilevered $\mathrm{L}=3,632 /\left(1.6^{*} 200\right)=11.35$ "
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(7,267 / 12 \bullet 8 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=7.782^{\prime}=7^{\prime}-93 / 8^{\prime \prime}$,
concentrated $\rightarrow \mathrm{L}=7,267 * 4 /(334 \#)=87.0 "$
cantilevered $\mathrm{L}=7,267 / 334=21.76$ "

Connector Sleeves and Corners

The connector sleeves and corners are demonstrated as adequate based on strength for the 1-1/2" size.

CRL LR20 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails.
Area: 0.4193 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.09118 \mathrm{in}^{4} \quad \mathrm{I}_{\mathrm{yy}}: 0.1915 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4663$ in $\mathrm{r}_{\mathrm{yy}}: 0.6757$ in
$\mathrm{C}_{\mathrm{xx}}: 1.0$ in $\mathrm{C}_{\mathrm{yy}}: 0.791$ in (from bottom)
$\mathrm{S}_{\mathrm{xx}}: 0.1154 \mathrm{in}^{3}$ or $0.1157 \mathrm{in}^{3} \mathrm{~S}_{\mathrm{yy}}: 0.1915 \mathrm{in}^{3}$
$\mathrm{t}=0.053$ "

Allowable stresses:
For stainless steel options: design using SEI/ASCE
$8-02$, From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A 304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
(eq 3.3.1.1-9)
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0 * 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1 " / 0.053^{\prime \prime}\right)^{2}}=137.1 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25^{*} 0.1154 * 30 \mathrm{ksi}=4,328 " \#$ Vertical loading Controls
$1.25 * 0.1915 * 30 \mathrm{ksi}=7,181$ " $\#$ Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\text {cr }}=0.1154 * 75 \mathrm{ksi}=8,655$ "\# Vertical load Controls Ultimate
$0.1915 * 75 \mathrm{ksi}=14,363$ "\# Horizontal load
Determine allowable rail spans (ignoring deflection) spans 2 lights minimum
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(4,328 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=6.714$,
concentrated $\rightarrow \mathrm{L}=4,328 * 5 /(1.6 * 200 \#)=67.625$
cantilevered $\mathrm{L}=4,328 /\left(1.6^{*} 200\right)=13.5 "$
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(8,655 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=9.495^{\prime}$
concentrated $\rightarrow \mathrm{L}=8,655^{*} 4 /(334 \#)=103.65 "$
cantilevered $\mathrm{L}=8,655 / 334=25.91$ "
For laminated glass end light length based on horizontal strength
Cantilevered end
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(14,363 / 12 \cdot 2 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=5.47^{\prime}$
concentrated $\rightarrow \mathrm{L}=14,363 /(334 \#)=43.0$ "

CRL LR25 SERIES CAP RAIL

Used as the top rail on glass balustrade panel guardrails.
Area: 0.65177 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.2250 \mathrm{in}^{4} \mathrm{I}_{\mathrm{yy}}: 0.4484 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.5875$ in $\mathrm{r}_{\mathrm{y}}: 0.8295$ in
$\mathrm{C}_{\mathrm{xx}}: 1.25$ in $\mathrm{C}_{\mathrm{yy}}: 0.986$ in (from bottom)
$\mathrm{S}_{\mathrm{xx}}: 0.2282 \mathrm{in}^{3}$ or $0.2232 \mathrm{in}^{3} \mathrm{~S}_{\mathrm{yy}}$: $0.3587 \mathrm{in}^{3}$ $\mathrm{t}=0.053$ "
Allowable stresses:

For stainless steel options: design using SEI/ASCE
$8-02$, From Table A1, $\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{U}}=75 \mathrm{ksi}$ for annealed A304 stainless steel sheet used to form the rail.
$\mathrm{F}_{\mathrm{cr}}=\frac{\pi^{2} \mathrm{k} \eta \mathrm{E}_{0}}{12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}}$
(eq 3.3.1.1-9)
$\eta=0.5$ (from table A6a)
$\mathrm{k}=3\left(\mathrm{I}_{s} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1<4.0=4.0$ for circular shape
$\mu=0.3$
$\mathrm{E}_{0}=27.0 \times 10^{3} \mathrm{psi}$
$\mathrm{F}_{\text {cr }}=\frac{\pi^{2} * 4.0^{*} 0.5 * 27.0 \times 10^{3} \mathrm{ksi}}{12\left(1-0.3^{2}\right)\left(1.25^{\prime} / 0.053^{\prime \prime}\right)^{2}}=87.7 \mathrm{ksi}$ but $\leq \mathrm{F}_{\mathrm{U}}$
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}=1.25 * 0.2282 * 30 \mathrm{ksi}=8,558 " \#$ Vertical loading Controls $1.25 * 0.3587 * 30 \mathrm{ksi}=13,451 " \#$ Horizontal load
or $\mathrm{M}_{\mathrm{ULT}}=\mathrm{S}_{\mathrm{f}} \mathrm{F}_{\mathrm{cr}}=0.2282 * 75 \mathrm{ksi}=17,115$ "\# Vertical load Controls Ultimate

$$
0.3587 * 75 \mathrm{ksi}=26,903 " \# \text { Horizontal load }
$$

Determine allowable rail spans (ignoring deflection) spans 2 lights minimum
Live loads: 50 plf uniform or concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(8,558 / 12 \cdot 10 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=9.442$,
concentrated $\rightarrow \mathrm{L}=8,558 * 5 /(1.6 * 200 \#)=133.72$
cantilevered $\mathrm{L}=8,558 /(1.6 * 200)=26.7$ "
Ultimate Strength
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(17,115 / 12 \cdot 10 /\left(1.6^{*} 50 \mathrm{plf}\right)\right)^{1 / 2}=13.352^{\prime}$
concentrated $\rightarrow \mathrm{L}=17,115^{*} 4 /(334 \#)=205 "$
cantilevered $\mathrm{L}=17,115 / 334=51.24$ "
For laminated glass end light length based on horizontal strength
Cantilevered end
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=(26,903 / 12 \cdot 2 /(1.6 * 50 \mathrm{plf}))^{1 / 2}=7.487^{\prime}$
concentrated $\rightarrow \mathrm{L}=26,903 /(334 \#)=80.55 "$
Fr 12" deflection: $\mathrm{L}=\left[12 * 3 * 20 \times 10^{6 *} 0.4484 / 334\right]^{1 / 3}=98.87$ " (doesn't control)

Blumeraft 324 Aluminum

6063-T5 Aluminum
Area: 1.0916 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.18765 \mathrm{in}^{4} ; \mathrm{I}_{\mathrm{yy}}: 0.25952 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.41462 \mathrm{in} ; \mathrm{r}_{\mathrm{yy}}: 0.48759 \mathrm{in}$
$\mathrm{C}_{\mathrm{xx}}: 0.6875 \mathrm{in} ; \mathrm{C}_{\mathrm{yy}}: 0.803$ in
$\mathrm{S}_{\mathrm{xx}}: 0.2338 \mathrm{in}^{3}$ (bottom) or $0.328 \mathrm{in}^{3}$ (top)
$\mathrm{Z}_{\mathrm{xx}}: 0.3996 \mathrm{in}^{3}$

Syy: $0.3775 \mathrm{in}^{3} ; \mathrm{Z}_{\mathrm{yy}}: 0.4974 \mathrm{in}^{3}$
$\mathrm{t}=0.3125$ "
Strength per 2015 ADM Section F. 1 and F. 2
$\mathrm{b} / \mathrm{t}=\frac{1.0625}{0.3125}=3.4 \leq 14.5$ Lateral torsional buckling won't control.
Vertical loads
$M_{n x y}=F_{y} Z_{x x}=16 \mathrm{ksi}^{*} 0.3996 \mathrm{in}^{3}=6,394 " \#$
$\mathrm{M}_{\mathrm{nxu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{xx}}=22 \mathrm{ksi} * 0.3996 \mathrm{in}^{3}=8,791$ " $\#$
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=6,394 / 1.65=3,875$ "\# $\leq 8,791 / 1.95=4,508 " \#$
Horizontal loads
$\mathrm{M}_{\mathrm{nyy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{yy}}=16 \mathrm{ksi} * 0.4974 \mathrm{in}^{3}=7,958$ "\#
$\mathrm{M}_{\mathrm{nyu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{yy}}=22 \mathrm{ksi} * 0.4974 \mathrm{in}^{3}=10,943$ "\#
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=7,958 / 1.65=4,823$ "\# $\leq 10,943 / 1.95=5,612$ " $\#$
Vertical load:
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[3,875^{\prime \prime \# *} 10 /\left(50 \text { plf }^{*} 12 " /{ }^{\prime \prime}\right)\right]^{1 / 2}=8.036 \text { or } \\
& S=3,875^{\prime \# *} / 200^{\#}=96.875 \text { inches }
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=3,875 / 200=19.375^{\prime \prime}
$$

Horizontal load:
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[4,823^{\prime \# * *} 10 /\left(50 \mathrm{plf}^{*} * 12^{\prime \prime}\right)\right]^{1 / 2}=8.966 \text { or } \\
& S=4,823^{\prime \# *} 5 / 200^{\#}=120.575 \text { inches }
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=4,823 / 200=24.11^{\prime \prime}
$$

For light failure only horizontal load case applies for laminated glass.

GRL107MBL CAP RAIL

6063-T6 Aluminum
$11 / 4$ " x $15 / 16$ " x 11 Ga
Area: 0.4463 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.07768 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.1122 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.417$ in
$\mathrm{r}_{\mathrm{yy}}: 0.501 \mathrm{in}$
$\mathrm{S}_{\mathrm{xx}}: 0.0957 \mathrm{in}^{3}$
$S_{y y}: 0.1793$ in 3

Strength per 2015 ADM Section F. 1 and F. 2
$\mathrm{b} / \mathrm{t}=\frac{1.0625}{0.125}=8.5 \leq 14.5$ Lateral torsional buckling won't control.
Vertical loads
$\mathrm{M}_{\mathrm{nxy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{xx}}=25 \mathrm{ksi} * 0.0957 \mathrm{in}^{3}=2,393 " \#$
$\mathrm{M}_{\mathrm{nxu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{xx}}=30 \mathrm{ksi}{ }^{*} 0.0957 \mathrm{in}^{3}=2,871$ " $\#$
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=2,393 / 1.65=1,450$ "\# $\leq 2,871 / 1.95=1,472 " \#$
Horizontal loads
$\mathrm{M}_{\mathrm{nyy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{yy}}=25 \mathrm{ksi}{ }^{*} 0.1793 \mathrm{in}^{3}=4,483$ " $\#$
$\mathrm{M}_{\mathrm{nyu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{yy}}=30 \mathrm{ksi}{ }^{*} 0.1793 \mathrm{in}^{3}=5,379{ }^{\prime \prime} \#$
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=4483 / 1.65=2,717$ " $\# \leq 5,379 / 1.95=2,758$ " $\#$
Vertical load:
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[2,717^{\prime \# *} 10 /\left(50 \mathrm{plf}^{*} * 2^{\prime \prime}\right)\right]^{1 / 2}=6.73 \text { ' or } \\
& S=2,717^{\prime \# \#} 5 / 200^{\#}=675 / 8^{\prime \prime}
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=2,717 / 200=139 / 16^{\prime \prime}
$$

Horizontal load:
max span 50 plf horizontal load or 200 lb concentrated load

$$
\begin{aligned}
& S=\left[1,450^{\prime \prime * *} 10 /\left(50 \mathrm{plf}^{*} * 12^{\prime \prime \prime}\right)\right]^{1 / 2}=4.916 \text { or } \\
& S=1,450^{\prime \# *} 5 / 200^{\#}=36.25^{\prime \prime}
\end{aligned}
$$

For cantilevered case:

$$
\mathrm{S}_{\mathrm{C}}=1,450 / 200=7.25^{\prime \prime}
$$

L10MBL CAP RAIL

Area: 0.4653 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.09776 \mathrm{in}^{4} ; \quad \mathrm{I}_{\mathrm{yy}}: 0.1572 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4584 \mathrm{in} ; \quad \mathrm{r}_{\mathrm{yy}}: 0.5813 \mathrm{in}$
$\mathrm{C}_{\mathrm{xx}}: 0.7185$ in ; $\quad \mathrm{C}_{\mathrm{yy}}: 0.890$ in
$\mathrm{S}_{\mathrm{xx}}: 0.1098 \mathrm{in}^{3}$
Syy: $0.209 \mathrm{in}^{3}$
$\mathrm{t}=0.125$ in
Strength per 2015 ADM Section F. 1 and F. 2
$\mathrm{b} / \mathrm{t}=\frac{1.0625}{0.125}=8.5 \leq 14.5$ Lateral torsional buckling

Vertical loads
$M_{n x y}=F_{y} Z_{x x}=25 \mathrm{ksi} * 0.1098 \mathrm{in}^{3}=2,745$ " $\#$
$\mathrm{M}_{\mathrm{nxu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{xx}}=30 \mathrm{ksi}{ }^{*} 0.1098 \mathrm{in}^{3}=3,294{ }^{\prime \prime} \#$
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=2,745 / 1.65=1,664 " \# \leq 3,294 / 1.95=1,689 " \#$
Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load
Vertical \rightarrow uniform $\rightarrow \mathrm{L}=\left(1,664 / 12^{*} 10 /(50 \mathrm{plf})\right)^{1 / 2}=5.266^{\prime}=4^{\prime}-43 / 16^{\prime \prime}$ concentrated $\rightarrow \mathrm{L}=1,664 * 5 /(200 \#)=41.6^{\prime \prime}=3 \prime-55 / 8^{\prime \prime}$

Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=1,664 " \# /(200)=23.72^{\prime \prime}=8^{\prime}-5 / 16^{\prime \prime}
$$

Horizontal loads
$\mathrm{M}_{\mathrm{nyy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{yy}}=25 \mathrm{ksi} * 0.209 \mathrm{in}^{3}=5,225$ "\#
$\mathrm{M}_{\mathrm{nyu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{yy}}=30 \mathrm{ksi} * 0.209 \mathrm{in}^{3}=6,270$ "\#
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=5,225 / 1.65=3,167$ '\# $\leq 6,270 / 1.95=3,215$ " $\#$
Horizontal \rightarrow uniform $\rightarrow \mathrm{L}=\left(3,167 / 12^{*} 10 /(50 \text { plf })\right)^{1 / 2}=7.265^{\prime}=7^{\prime}-4^{\prime \prime}$
concentrated $\rightarrow \mathrm{L}=3,167 * 5 /(200 \#)=793 / 16 "$

Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=3,167^{\prime \prime} \# /(200)=23.72 "=1 '-37 / 8^{\prime \prime}
$$

GRL10MBL CAP RAIL

Area: 0.3949 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.06763 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.06324 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4139$ in
$\mathrm{r}_{\mathrm{yy}}: 0.4002$ in
$C_{x x}: 0.7760$ in
$\mathrm{C}_{\mathrm{yy}}: 0.50$ in
$\mathrm{S}_{\mathrm{xx}}: 0.08716 \mathrm{in}^{3}$
$S_{y y}: 0.1265$ in 3
$\mathrm{t}=0.1177 \mathrm{in}(11 \mathrm{ga})$

Strength per 2015 ADM Section F. 1 and F. 2 $\mathrm{b} / \mathrm{t}=\frac{1.18}{0.125}=9.5 \leq \begin{aligned} & 14.5 \text { Lateral torsional } \\ & \text { buckling won't control. }\end{aligned}$

Vertical loads
$\mathrm{M}_{\mathrm{nxy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{xx}}=25 \mathrm{ksi}{ }^{*} 0.08716 \mathrm{in}^{3}=2,179$ "\#
$\mathrm{M}_{\mathrm{nxu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{xx}}=30 \mathrm{ksi}{ }^{*} 0.08716 \mathrm{in}^{3}=2,615$ "\#
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=2,179 / 1.65=1,321$ "\# $\leq 2,615 / 1.95=1,341$ "\#
Determine allowable rail spans (ignoring deflection) assumes multiple spans:
Live loads: 50 plf uniform or 200 lb concentrated load

$$
\begin{gathered}
\text { Vertical } \rightarrow \text { uniform } \rightarrow \mathrm{L}=\left(1,321 / 12^{*} 10 /(50 \mathrm{plf})\right)^{1 / 2}=4.692^{\prime}=4^{\prime}-85 / 16^{\prime \prime} \\
\text { concentrated } \rightarrow \mathrm{L}=1,321^{*} 5 /(200 \#)=33.0^{\prime \prime}=2^{\prime}-7^{\prime \prime}
\end{gathered}
$$

Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=1,321 " \# /(200)=6-5 / 8 "
$$

Horizontal loads
$\mathrm{M}_{\mathrm{nyy}}=\mathrm{F}_{\mathrm{y}} \mathrm{Z}_{\mathrm{yy}}=25 \mathrm{ksi} * 0.1265 \mathrm{in}^{3}=3,163$ "\#
$\mathrm{M}_{\mathrm{nyu}}=\mathrm{F}_{\mathrm{u}} \mathrm{Z}_{\mathrm{yy}}=30 \mathrm{ksi} * 0.1265 \mathrm{in}^{3}=3,795$ "\#
$\mathrm{M}_{\mathrm{ax}}=\mathrm{M}_{\mathrm{nxy}} / \mathrm{n}_{\mathrm{s}} \leq \mathrm{M}_{\mathrm{nxu}} / \mathrm{n}_{\mathrm{u}}=3,163 / 1.65=1,917 " \# \leq 3,795 / 1.95=1,946 " \#$

$$
\begin{gathered}
\text { Horizontal } \rightarrow \text { uniform } \rightarrow \mathrm{L}=\left(1,917 / 12^{*} 10 /(50 \mathrm{plf})\right)^{1 / 2}=5.652^{\prime}=5^{\prime}-713 / 16^{\prime \prime} \\
\text { concentrated } \rightarrow \mathrm{L}=1,917 * 5 /(200 \#)=47.925^{\prime \prime}=3^{\prime}-117 / 8^{\prime \prime}
\end{gathered}
$$

Cantilevered section:
For 200\# concentrated load:

$$
\mathrm{L}=1,917 " \# /(200)=9.585^{\prime \prime}=99 / 16^{\prime \prime}
$$

HANDRAILS/GRAB RAILS

Guard applications require a top rail or grab rail. The grab rail shall have adequate strength to support the live load of 200 lb concentrated or 50 plf distributed load based on the applicable requirements for the material type. When installed along stairs a grab rail is required at between $34 "$ and 38 " above the stair tread nosing in accordance with IBC Section 1012. The terms handrail and grab rail are synonymous herein.

Stainless Steel Grab Rails:
The stainless steel grab rails are fabricated from 304 or 316 tube. The rail strength was evaluated in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members.
From Section 3.3.1.1 Nominal section strength 2. Procedure II - Based on Inelastic Reserve Capacity:
$\mathrm{M}_{\mathrm{n}}=1.25 \mathrm{~S}_{\mathrm{e}} \mathrm{F}_{\mathrm{y}}$
$\varnothing=0.9$ for no local distortions allowed at nominal bending strength.
F_{cr} is a function of rail geometry and is the maximum extreme fiber stress at compression element buckling failure, for $\mathrm{t}>0.5 " \mathrm{~F}_{\mathrm{cr}}$ will exceed F_{y}.

Brass Grab Rails: No design standard exists for brass therefore design is based on a either bending tension yield or compression buckling whichever controls with 1.6 load factor and 0.9 resistance factor.

Grab Rail Bending Moments

For a typical installation the grab rail will be continuous over a minimum of three simple supports with the ends cantilevered.
The bending moments are conservatively estimated as:
$\mathrm{M}_{\mathrm{w}}=\mathrm{wL}^{2} / 8$ For uniform load case
$\mathrm{M}_{\mathrm{c}}=\mathrm{PL} / 4$ For concentrated load at mid span load case
Or for cantilevered ends
$\mathrm{M}_{\mathrm{wc}}=\mathrm{wL}^{2 / 2}$ For uniform load case
$\mathrm{M}_{\mathrm{cc}}=$ PL For concentrated load at end of rail.
Locate splice within lc of a support.
When mounted to glass lights there shall be a minimum of two brackets per glass light.

NOTE: The grab rail properties, strengths
and maximum spans herein are provided to assist the specifier in the selection of an appropriate grab rail. It is the specifier's responsibility to determine suitability for a specific application.

GRAB RAIL -1-1/4" SCHEDULE 40 PIPE RAIL Stainless Steel
Pipe properties:
O.D. $=1.66^{\prime \prime}$
I.D. $=1.38^{\prime \prime}, \mathrm{t}=0.140^{\prime \prime}$
$\mathrm{A}=0.669 \mathrm{in}^{2}$
$\mathrm{I}=0.195 \mathrm{in}^{4}$
$\mathrm{S}=0.235 \mathrm{in}^{3}$
$\mathrm{r}=0.540$ in
Stainless steel pipe in accordance with

ASTM A312, or A554
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 75 \mathrm{ksi}$
$\phi \mathrm{M}_{\mathrm{n}}=0.9^{*} 1.25^{*} \mathrm{~S}^{*} \mathrm{~F}=0.9^{*} 1.25 * 0.235^{*} 30 \mathrm{ksi}$
ø $\mathrm{M}_{\mathrm{n}}=7,931 " \#$
$\mathrm{M}_{\mathrm{l}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=7,931 / 1.6=4,957^{\prime}{ }^{\prime} \#=413.1^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200\# concentrated load any direction. Wind load not applicable to pipe rails.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\lg)^{2} / 8 \text { or }=\mathrm{P}(\lg) / 4 \text { Solve for lg: } \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(413.1^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=8.13^{\prime}=8^{\prime}-1.5^{\prime \prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 413.1^{\prime} \# / 200 \#=8.262^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=8^{\prime}-1.5^{\prime \prime}----$-Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2 / 2} \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w})^{1 / 2}=\left(2^{*} 413.1^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.06^{\prime} \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=413.1^{\prime} \# / 200 \#=2.0655^{\prime}=2^{\prime}-3 / 4^{\prime \prime}---- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -1-1/2" SCHEDULE 40 PIPE RAIL

Stainless Steel

Pipe properties:
O.D. $=1.90^{\prime \prime}$
I.D. $=1.61 ", \mathrm{t}=0.145^{\prime \prime}$
$\mathrm{A}=0.799 \mathrm{in}^{2}$
$\mathrm{I}=0.293 \mathrm{in}^{4}$
$\mathrm{S}=0.309 \mathrm{in}^{3}$
$\mathrm{Z}=0.421 \mathrm{in}^{3}$ minimum
$\mathrm{r}=0.623$ in

Stainless steel pipe in accordance with ASTM A312, or A554
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 75 \mathrm{ksi}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.9^{*} 1.25^{*} \mathrm{~S}^{*} \mathrm{~F}_{\mathrm{y}}=0.9^{*} 1.25 * 0.309 * 30 \mathrm{ksi}$
$\varnothing \mathrm{M}_{\mathrm{n}}=10,429{ }^{\prime \prime} \#$
$\mathrm{M}_{\mathrm{l}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=6,518^{\prime \prime} \#=543.16^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200\# concentrated load any direction. Wind load not applicable to pipe rails.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2} / 8 \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for lg: } \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(543.16^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=9.322^{\prime}=9^{\prime}-3^{\prime \prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 543.16^{\prime} \# / 200 \#=10.863^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=9^{\prime}-3$ " ---- - Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for } \mathrm{lc} \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} * 543.16^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.787^{\prime}=4^{\prime} 9.5^{\prime \prime} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=543.16^{\prime} \# / 200 \#=2.716^{\prime}=2^{\prime}-81 / 2^{\prime \prime}----- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -HRH15 1-1/2" x 1/8" WALL

Stainless Steel

Pipe properties:
O.D. $=1.50 "$
I.D. $=1.25 ", t=0.125 "$
$\mathrm{A}=0.540 \mathrm{in}^{2}$
$\mathrm{I}=0.129 \mathrm{in}^{4}$
$\mathrm{S}=0.172 \mathrm{in}^{3}$
$\mathrm{Z}=0.236 \mathrm{in}^{3}$ minimum
$\mathrm{r}=0.488 \mathrm{in}, \mathrm{J}=0.255 \mathrm{in}^{4}$

Stainless steel tube in accordance with ASTM A554-10
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 45 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 91 \mathrm{ksi}$ (From Mill Certification Tests)
$\emptyset \mathrm{M}_{\mathrm{n}}=0.9^{*} 1.25^{*} \mathrm{~S}^{*} \mathrm{~F}_{\mathrm{y}}=0.9^{*} 1.25 * 0.172 * 45 \mathrm{ksi}$
$\emptyset \mathrm{M}_{\mathrm{n}}=8,707.5$ "\#
$\mathrm{M}_{\mathrm{l}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=5,442.2 \prime \#=453.52^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2} / 8 \text { or }=\mathrm{P}(\lg) / 4 \text { Solve for lg: } \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(453.52^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=8.518^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 453.52^{\prime} \# / 200 \#=9.07^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=8^{\prime}-63 / 16$ "-Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 453.52^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.259^{‘} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=453.52^{\prime} \# / 200 \#=2.268^{\prime}=2^{\prime}-33 / 16^{\prime \prime}---- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL - 1 1/2" x 0.05 " WALL
HR15
Stainless Steel
Pipe properties:
O.D. = 1.5"
I.D. $=1.40^{\prime \prime}, \mathrm{t}=0.05$ "
$\mathrm{A}=0.2277 \mathrm{in}^{2}$
$\mathrm{I}=0.0599 \mathrm{in}^{4}$
$\mathrm{S}=0.0799 \mathrm{in}^{3}$
$\mathrm{r}=0.5129 \mathrm{in}$

Stainless steel tube in accordance with ASTM A554-10
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 45 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 91 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\pi^{2} \mathrm{kE} /\left[\left[12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}\right]=4 * \pi^{2} 27,000 \mathrm{ksi} /\left[12\left(1-0.3^{2}\right)(0.70 / 0.05)^{2}\right]=124.5 \mathrm{ksi}\right.$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.9 * 1.25 * \mathrm{~S}^{*} \mathrm{~F}_{\mathrm{y}}=0.9^{*} 1.25 * 0.0799^{*} 45 \mathrm{ksi}$
ø $\mathrm{M}_{\mathrm{n}}=4,045$ " $\#$
$\mathrm{M}_{\mathrm{l}}=\emptyset \mathrm{M}_{\mathrm{n}} / 1.6=2,528^{\prime \prime} \#=210.67^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2} / 8 \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \mathrm{lg}: \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(210.67^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=5.806^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 210.67^{\prime} \# / 200 \#=4.213^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=4^{\prime}-29 / 16$ "-Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 210.67^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=2.903^{\prime} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=210.67^{\prime} \# / 200 \#=1.053^{\prime}=1^{\prime}-5 / 8^{\prime \prime}----- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -2" x 0.05" WALL

Stainless Steel

Pipe properties:
O.D. = 2.0"
I.D. $=1.90^{\prime \prime}, \mathrm{t}=0.05^{\prime \prime}$
$\mathrm{A}=0.306 \mathrm{in}^{2}$
$\mathrm{I}=0.1457 \mathrm{in}^{4}$
$\mathrm{S}=0.1457 \mathrm{in}^{3}$

$\mathrm{r}=0.6896$ in
Stainless steel tube in accordance with ASTM A554-10
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 45 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 91 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{cr}}=\pi^{2} \mathrm{kE} \mathrm{E}_{\mathrm{o}} /\left[12\left(1-\mu^{2}\right)(\mathrm{w} / \mathrm{t})^{2}\right]=4 * \pi^{2} 27,000 \mathrm{ksi} /\left[12\left(1-0.3^{2}\right)(0.95 / 0.05)^{2}\right]=67.6 \mathrm{ksi}$
$\varnothing \mathrm{M}_{\mathrm{n}}=0.9 * 1.25 * \mathrm{~S}^{*} \mathrm{~F}_{\mathrm{y}}=0.9^{*} 1.25 * 0.1457 * 45 \mathrm{ksi}$
ø $\mathrm{M}_{\mathrm{n}}=7,376$ "\#
$\mathrm{M}_{\mathrm{l}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=4,610^{\prime \prime} \#=384.17^{\prime} \#$

Allowable Span:
Check based on simple span and cantilevered section.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\lg)^{2 / 8} \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \lg : \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(384.17^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=7.840^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 384.17^{\prime} \# / 200 \#=7.683^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=7^{\prime}-83 / 16$ ' - Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 384.17^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=3.920^{‘} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=384.17^{\prime} \# / 200 \#=1.921^{\prime}=1^{\prime}-10^{\prime \prime}---- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -1-1/4" SCHEDULE 40 PIPE RAIL

 6063-T6 AluminumPipe properties:
O.D. = 1.66"
I.D. $=1.38^{\prime \prime}, \mathrm{t}=0.140^{\prime \prime}$
$\mathrm{A}=0.669 \mathrm{in}^{2}$
$\mathrm{I}=0.195 \mathrm{in}^{4}$
$\mathrm{S}=0.235 \mathrm{in}^{3}$
$\mathrm{r}=0.540$ in

Allowable stresses from ADM Table 2-24
$\mathrm{F}_{\mathrm{bt}}=18.0 \mathrm{ksi} ; \mathrm{R}_{\mathrm{b}} / \mathrm{t}=0.69 / 0.14=4.9<35 ; \mathrm{F}_{\mathrm{bc}}=18.0 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=\mathrm{S}^{*} \mathrm{~F}_{\mathrm{y}}=0.235^{*} 18 \mathrm{ksi}=4,230$ " $\#=352.5^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200\# concentrated load any direction. Wind load not applicable to pipe rails.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2 / 8} \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \lg : \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(352.5^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=7.510^{\prime}=\text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 352.5^{\prime} \# / 200 \#=7.05^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=7^{\prime}-9 / 16$ ' - --Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w})^{1 / 2}=\left(2^{*} 352.5^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=3.755^{\prime} \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=352.5^{\prime} \# / 200 \#=1.7625^{\prime}=1^{\prime}-91 / 8^{\prime \prime}---- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -1-1/2" SCHEDULE 40 PIPE RAIL 6063-T6 Aluminum
Pipe properties:
O.D. $=1.90^{\prime \prime}$
I.D. $=1.61^{\prime \prime}, \mathrm{t}=0.145^{\prime \prime}$
$\mathrm{I}=0.293 \mathrm{in}^{4}$
$\mathrm{S}=0.309 \mathrm{in}^{3}$
$\mathrm{Z}=0.421 \mathrm{in}^{3}$ minimum
$\mathrm{r}=0.623$ in
Allowable stresses from ADM Table 2-24

$\mathrm{F}_{\mathrm{bt}}=18.0 \mathrm{ksi} ; \mathrm{R}_{\mathrm{b}} / \mathrm{t}=0.805 / 0.145=5.6<35 ; \mathrm{F}_{\mathrm{bc}}=18.0 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=\mathrm{S} * \mathrm{~F}_{\mathrm{y}}=0.309 * 18 \mathrm{ksi}=5,562^{\prime \prime} \#=463.5{ }^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

Design Loads: 50 plf distributed load, any direction or 200\# concentrated load any direction. Wind load not applicable to pipe rails.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\lg)^{2} / 8 \text { or }=\mathrm{P}(\lg) / 4 \text { Solve for } \lg : \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(463.5^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=8.612^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 463.5 \# / 200 \#=9.07
\end{aligned}
$$

Maximum allowable span for supports at both ends $=7^{\prime}-1$ " - Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 463.5^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.306^{\prime} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=463.5^{\prime} \# / 200 \#=2.318^{\prime}=2^{\prime}-3-1 / 2^{\prime \prime}---- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -1-1/2" $\times 1 / \mathbf{8}^{\prime \prime}$ WALL ARHR15S
6005-T5 Aluminum
Pipe properties:
O.D. = 1.50"
I.D. $=1.25^{\prime \prime}, \mathrm{t}=0.125^{\prime \prime}$
$\mathrm{A}=0.540 \mathrm{in}^{2}$
$\mathrm{I}=0.129 \mathrm{in}^{4}$
$\mathrm{S}=0.172 \mathrm{in}^{3}$

Allowable stresses from ADM Table 2-220
$\mathrm{F}_{\mathrm{bt}}=24.0 \mathrm{ksi} ; \mathrm{R}_{\mathrm{b}} / \mathrm{t}=0.625 / 0.125=5<29 ; \mathrm{F}_{\mathrm{bc}}=25.0 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=\mathrm{S} * \mathrm{~F}_{\mathrm{y}}=0.172 * 24 \mathrm{ksi}=4,128^{\prime \prime} \#=344.0^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2} / 8 \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \mathrm{lg}: \\
& \mathrm{lg}=(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(344.0^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=7.419^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 344.0^{\prime} \# / 200 \#=6.88^{\prime}
\end{aligned}
$$

Maximum allowable span for supports at both ends $=6$ '-10 9/16"-Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 344^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=3.709^{\prime} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=344^{\prime} \# / 200 \#=1.72^{\prime}=1^{\prime}-85 / 8^{\prime \prime}----- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

Grab rail attachment to bracket:

(2) \#10 screws through $1 / 8$ " thick saddle plate into rail tube.

Shear strength of the screws:
$\emptyset \mathrm{V}_{\mathrm{n}}=0.65 * 0.0211 \mathrm{in}^{2 *} 33.7 \mathrm{ksi}=462 \#$
Bearing on grab rail ($1 / 8$ " wall minimum)
For 6063 T5 aluminum
$\emptyset \mathrm{B}_{\mathrm{n}}=0.75 * 0.125 " * 0.164{ }^{\prime} * 30 \mathrm{ksi}=461 \#$
Allowable shear load:
$\mathrm{V}_{\mathrm{s}}=2 * 462 \# / 1.6=577 \#$

Tension strength of screw into grab rail
$\phi \mathrm{T}_{\mathrm{ns}}=0.75 * 0.014 \mathrm{in}^{2} * 60 \mathrm{ksi}=630 \#$
For screw pullout:

For stainless steel:
$\emptyset \mathrm{T}_{\mathrm{n}}=\emptyset \mathrm{A}_{\mathrm{sn}} * \mathrm{t}_{\mathrm{c}} * 0.6 * \mathrm{~F}_{\mathrm{tu}}$
$\mathrm{A}_{\mathrm{sn}}=0.334 \mathrm{in}^{2} / \mathrm{in}$
$\phi \mathrm{T}_{\mathrm{n}}=0.75 * 0.334 * 0.125 * 0.6 * 70 \mathrm{ksi}=1315 \#$
For aluminum:
$\mathrm{P}_{\text {not }}=\mathrm{K}_{\mathrm{s}} \mathrm{Dt}_{\mathrm{c}} \mathrm{F}_{\mathrm{ty} 2}=1.2 * 0.164 * 0.128 * 16 \mathrm{ksi}=403 \#$
$\mathrm{P}_{\mathrm{a}}=\mathrm{nP}_{\text {not }} / \mathrm{n}_{\mathrm{s}}=2$ screws $* 403 \# / 3=269 \#$

EDWARD C. ROBISON, PE, SE

BRACKET MOUNTED TO GLASS

Check strength of bracket bearing on glass
2 " round standoff
Determine bearing load on glass:
From $\sum \mathrm{M}_{\mathrm{CL}}=0$

$$
\begin{aligned}
& 0=2 / 3^{\prime \prime} \mathrm{R}_{\mathrm{u}}+2 / 3^{\prime \prime} \mathrm{R}_{1}-\mathrm{M} \\
& \mathrm{R}_{\mathrm{u}}=-\mathrm{R}_{1} \\
& \mathrm{R}=\mathrm{M}^{*}(3 / 4) \text { or } \\
& \mathrm{M}=4 / 3 \mathrm{R}
\end{aligned}
$$

From $\sum \mathrm{F}_{\mathrm{H}}=0$

$$
\mathrm{T}=\mathrm{R}_{\mathrm{u}}+-\mathrm{R}_{\mathrm{l}}=2 \mathrm{R}
$$

For $3 / 8 " 316$ SS bolt

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{u}}=85 \mathrm{ksi} \\
& \mathrm{~A}_{\mathrm{t}}=0.0775 \mathrm{in}^{2}
\end{aligned}
$$

$$
\emptyset \mathrm{T}_{\mathrm{u}}=\emptyset \mathrm{A}_{\mathrm{t}} * \mathrm{~F}_{\mathrm{u}}=0.75 * 0.0775 \mathrm{in}^{2} * 85 \mathrm{ksi}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=4.94 \mathrm{k} \\
& \mathrm{~T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=4,940 \# / 1.6=3,088 \#
\end{aligned}
$$

Determine service moment by substituting T for R and solve for M and V

$$
\begin{aligned}
& \mathrm{M}=4 / 3 \mathrm{R}=2 / 3 \mathrm{~T}=2 / 3 * 3,088=2,059 " \# \\
& \mathrm{~V}=\mathrm{M} / 3.5^{\prime \prime}=588 \#
\end{aligned}
$$

For glass bearing pressure:

$$
\begin{aligned}
& \mathrm{A}=1.25 \mathrm{in}^{2} \\
& \mathrm{f}_{\mathrm{B}}=\frac{2,059 " \# / 1 " * 4}{1.25 \mathrm{in}^{2}}=6,589 \mathrm{psi} \text { max, Spacer strength }>7.5 \mathrm{ksi} \text { therefore okay }
\end{aligned}
$$

For brackets with bearing diameter larger than $2 "$ the contact pressure will be less and thus okay by inference. The Bearing on glass will not control the allowable load for any of the bracket series.

GRAB RAIL BRACKET - HR2S Manhattan Series

MOUNTED TO $1 / 2$ " GLASS PANEL
Loading 200 lb concentrated load or
50 plf distributed load
Grab rail bracket -
316 Stainless steel rod
Yield strength of steel:
$3161 / 4$ hard round rod
Fy $=75 \mathrm{ksi}-$ tension
Vertical bar
$1 / 2$ " x 3/4" bar

$\mathrm{Z}_{\text {bar }}=0.75 * 0.5 " 2 / 4=0.04687 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=\varnothing \mathrm{M}_{\mathrm{u}}=0.9^{*}\left(0.04687 \mathrm{in}^{3}{ }^{3} 75 \mathrm{ksi}\right)$
ø $\mathrm{M}_{\mathrm{n}}=3,164$ "\#
Allowable load per bracket
$\lambda \mathrm{P}=\mathrm{M}_{\mathrm{n}} / \mathrm{e}$
$\lambda=1.6$ for live load
$\mathrm{P}_{\mathrm{s}}=(3,164 " \# / 1.6) / 3^{\prime \prime}=659 \#$
Horizontal bar
Minimum
$\mathrm{Z}_{\text {bar }}=0.5 ״ 3 / 6=0.0208 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=\varnothing \mathrm{M}_{\mathrm{u}}=0.9^{*}\left(0.0208 \mathrm{in}^{3} * 75 \mathrm{ksi}\right)$
$\mathrm{M}_{\mathrm{n}}=1404$ "\#
@ Bracket:
$\mathrm{Z}_{\text {bar }}=0.75 " 3 / 6=0.0703 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=\varnothing \mathrm{M}_{\mathrm{u}}=0.9^{*}\left(0.0703 \mathrm{in}^{3 *} 75 \mathrm{ksi}\right)$
$\mathrm{M}_{\mathrm{n}}=4,746$ " $\#$

$\mathrm{P}_{\mathrm{s}}=(1,404 " \# / 1.6) / 1.5 "=585 \#$ or
$\mathrm{P}_{\mathrm{s}}=(4,746 " \# / 1.6) / 3.25 "=913 \#$
Vertical bar connection to horizontal bracket:
$5 / 16$ " screw, ASTM F593-98 CW or stronger; $\mathrm{F}_{\mathrm{ut}}=90 \mathrm{ksi}$
$\mathrm{A}_{\mathrm{t}}=0.0524 \mathrm{in}^{2}$
$\emptyset \mathrm{P}_{\mathrm{nt}}=0.75 * 90 \mathrm{ksi}^{*} 0.0524 \mathrm{in}^{2}=3,537 \#$
Allowable horizontal load on grab rail from $\sum \mathrm{M}$:
$\emptyset \mathrm{H}_{\mathrm{n}}=\emptyset \mathrm{P}_{\mathrm{nt}} * 0.375^{\prime \prime} / 3 "=3,537 \# * 0.375^{\prime \prime} / 3 "=442 \#$
$\mathrm{H}_{\mathrm{s}}=\varnothing \mathrm{H}_{\mathrm{n}} / 1.6=442 / 1.6=276 \#$

GRAB RAIL BRACKET - HR2D Newport Series
 MOUNTED TO 1/2" GLASS PANEL

Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket -
1/2" Dia. 316 Stainless steel rod
Yield strength of steel:
316 1/4 hard round rod $\mathrm{F}_{\mathrm{y}}=75 \mathrm{ksi}-$ tension

$$
\begin{aligned}
& \mathrm{Z}_{\text {bar }}=0.5 " 3 / 6=0.0208 \mathrm{in}^{3} \\
& \mathrm{M}_{\mathrm{n}}=\emptyset \mathrm{M}_{\mathrm{u}}=0.9 *\left(0.0208 \mathrm{in}^{3} * 75 \mathrm{ksi}\right) \\
& \mathrm{M}_{\mathrm{n}}=1404 " \#
\end{aligned}
$$

Allowable load per bracket

$$
\begin{aligned}
& \lambda \mathrm{P}=\mathrm{M}_{\mathrm{n}} / \mathrm{e} \\
& \lambda=1.6 \text { for live load } \\
& \mathrm{e}=2.875^{\prime \prime} \\
& \mathrm{P}=1404 " \# /\left(1.6^{*} 2.9375^{\prime \prime}\right)=299 \#
\end{aligned}
$$

For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 299\# PER BRACKET.

GRAB RAIL BRACKET - HR2E Malibu Series

 MOUNTED TO $1 / 2$ " GLASS PANELLoading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
3/4" Dia. 316 Stainless steel bar attached to mount with $3 / 8$ " threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in $3 / 4$ " bar edge.

For 3/8" 316 SS rod ASTM F593-98 CW or
stronger; $\mathrm{F}_{\mathrm{ut}}=90 \mathrm{ksi}$

$$
\mathrm{T}_{\mathrm{u}}=\mathrm{A} * 90 \mathrm{ksi}=0.0775 \mathrm{in}^{2} * 90 \mathrm{ksi}
$$

$$
\mathrm{T}_{\mathrm{u}}=6,975 \#
$$

$$
\mathrm{T}_{\mathrm{n}}=\emptyset \mathrm{T}_{\mathrm{u}}=0.75 * 6,975 \#=5,231 \#
$$

$$
\mathrm{T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=5,231 / 1 \cdot 6=3,270 \#
$$

$$
\lambda=1.6 \text { for live load }
$$

Couple moment strength:
$\mathrm{M}_{\mathrm{s}}=3,270 \# * 2 / 3 * 3 / 4 "=1,635$ " $\#$
Factored load per bracket
For maximum $\mathrm{H}=2.5$ "

$$
\begin{aligned}
& \mathrm{P}=\mathrm{M}_{\mathrm{s}} / \mathrm{e} \\
& \mathrm{e}=\mathrm{H}+1 "=3.5^{\prime \prime} \\
& \mathrm{P}=1,635^{\prime \prime} \# /\left(3.5^{\prime \prime}\right)=467 \#
\end{aligned}
$$

Bending in $1 / 2^{\text {" vertical bar, hardened SS: }}$
$\mathrm{Z}=0.5^{3} / 6=0.02083 \mathrm{in}^{3}$

$\emptyset \mathrm{M}_{\mathrm{n}}=0.02083 * 45 \mathrm{ksi}=937^{\prime \prime} \#$

Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\mathrm{M}_{\mathrm{n}}\right) / \Omega\right] / \mathrm{H}=[937 / 1.67] / 2.25=250 \#$

For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 250\# PER BRACKET.

GRAB RAIL BRACKET - HR3E Malibu Series
MOUNTED TO $1 / 2$ " GLASS PANEL
Loading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
3/4" Dia. 316 Stainless steel bar threaded to the mounting plate.

Mounting plates attached through glass with $3 / 8$ " threaded rod. Bracket strength will be determined
 by couple between threaded rod in tension and compression in mounting plates on glass.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; $\mathrm{F}_{\mathrm{ut}}=90 \mathrm{ksi}$
$\mathrm{T}_{\mathrm{u}}=\mathrm{A} * 90 \mathrm{ksi}=0.0775 \mathrm{in}^{2}{ }^{*} 90 \mathrm{ksi}$
$\mathrm{T}_{\mathrm{u}}=6,975 \#$
$\mathrm{T}_{\mathrm{n}}=\emptyset \mathrm{T}_{\mathrm{u}}=0.75 * 6,975 \#=5,231 \#$
$\mathrm{T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=5,231 / 1.6=3,270 \#$
$\lambda=1.6$ for live load
Couple moment strength:
$\mathrm{M}_{\mathrm{s}}=3,270 \#^{*} 2 / 3^{*} 3 / 4 "=1,635^{\prime \prime} \#$
Factored load per bracket
For maximum $\mathrm{H}=2.5$ "

$$
\begin{aligned}
& \mathrm{P}=\mathrm{M}_{\mathrm{s}} / \mathrm{e} \\
& \mathrm{e}=\mathrm{H}+1 "=3.5 " \\
& \mathrm{P}=1,635 " \# /(3.5 ")=467 \#
\end{aligned}
$$

Bending in $3 / 4$ " horizontal bar:

$\emptyset \mathrm{M}_{\mathrm{n}}=0.9 * 0.0703 * 30 \mathrm{ksi}=1,898^{\prime \prime} \#$
Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\varnothing \mathrm{M}_{\mathrm{n}}\right) / 1.6\right] / 2.25 "=[1898 / 1.6] / 2.25=527 \#$
Bending in $1 / 2$ " vertical bar, hardened SS:
$\mathrm{Z}=0.5^{3} / 6=0.02083 \mathrm{in}^{3}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.02083 * 45 \mathrm{ksi}=937{ }^{\prime} \#$
Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\mathrm{M}_{\mathrm{n}}\right) / \Omega\right] / \mathrm{H}=[937 / 1.67] / 2.25=250 \#$
For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 250\# PER BRACKET.

GRAB RAIL BRACKET - HR2F Coastal Series MOUNTED TO $1 / 2$ " GLASS PANEL
Loading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
3/4" Dia. 316 Stainless steel bar attached to mount with $3 / 8$ " threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in $3 / 4$ " bar edge.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger;
$\mathrm{F}_{\mathrm{ut}}=90 \mathrm{ksi}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=\mathrm{A} * 90 \mathrm{ksi}=0.0775 \mathrm{in}^{2} * 90 \mathrm{ksi} \\
& \mathrm{~T}_{\mathrm{u}}=6,975 \# \\
& \mathrm{~T}_{\mathrm{n}}=\emptyset \mathrm{T}_{\mathrm{u}}=0.75 * 6,975 \#=5,231 \# \\
& \mathrm{~T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=5,231 / 1.6=3,270 \# \\
& \lambda=1.6 \text { for live load }
\end{aligned}
$$

Couple moment strength:
$\mathrm{M}_{\mathrm{s}}=3,270 \# * 2 / 3 * 3 / 4 "=1,635 \prime \#$
Factored load per bracket
For maximum $\mathrm{H}=2.5$ "

$$
\begin{aligned}
& P=M_{s} / \mathrm{e} \\
& \mathrm{e}=\mathrm{H}+1 "=3.5 " \\
& \mathrm{P}=1,635 " \# /(3.5 ")=467 \#
\end{aligned}
$$

Bending in $1 / 2$ " vertical bar, hardened SS:
$\mathrm{Z}=0.5^{3} / 6=0.02083 \mathrm{in}^{3}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.02083 * 45 \mathrm{ksi}=937 " \#$
Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\mathrm{M}_{\mathrm{n}}\right) / \Omega\right] / \mathrm{H}=[937 / 1.67] / 2.25=250 \#$

For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 250\# PER BRACKET.

GRAB RAIL BRACKET - HR15G/HR20G La Jolla Series
MOUNTED TO $1 / 2$ " GLASS PANEL
Loading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
1/2" Dia. 316 Stainless steel rod
Yield strength of steel:
316 1/4 hard round rod
$\mathrm{F}_{\mathrm{y}}=75 \mathrm{ksi}-$ tension
$Z_{\text {bar }}=0.5 " 3 / 6=0.0208 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=\emptyset \mathrm{M}_{\mathrm{u}}=0.9^{*}\left(0.0208 \mathrm{in}^{3 *} 75 \mathrm{ksi}\right)$
$\mathrm{M}_{\mathrm{n}}=1404$ "\#
Shear strength of screw connecting saddle to bracket arm:
\#8 screw in double shear-
$\mathrm{A}_{\mathrm{v}}=0.014 \mathrm{in}^{2}$
$\mathrm{V}_{\mathrm{a}}=2 * \mathrm{~A}_{\mathrm{v}} * 0.6 \mathrm{~F}_{\mathrm{u}} / 3$ (for double shear)
$\mathrm{V}_{\mathrm{a}}=2 * 0.014 * 0.6 * 75 \mathrm{ksi} / 3=420 \#$
Allowable load per bracket
$\lambda \mathrm{P}=\mathrm{M}_{\mathrm{n}} / \mathrm{e}$
$\lambda=1.6$ for live load
$\mathrm{e}=2.875^{\prime \prime}$
$\mathrm{P}=1404 " \# /\left(1.6^{*} 2.9375 "\right)=299 \#$
For strength of bracket on glass refer to HR2S calculations

CONTROLLING ALLOWABLE LOAD IS 299\# PER BRACKET.

GRAB RAIL BRACKET - HR15G/HR20G Pismo Series
MOUNTED TO $1 / 2$ " GLASS PANEL
Loading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
1/2" Dia. 316 Stainless steel rod
Yield strength of steel:
316 1/4 hard round rod $\mathrm{F}_{\mathrm{y}}=75 \mathrm{ksi}-$ tension
$\mathrm{Z}_{\text {bar }}=0.5 " 3 / 6=0.0208 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=\varnothing \mathrm{M}_{\mathrm{u}}=$
$0.9^{*}\left(0.0208 \mathrm{in}^{3 *} 75 \mathrm{ksi}\right)$
$\mathrm{M}_{\mathrm{n}}=1404$ " $\#$
Allowable load per bracket

$$
\begin{aligned}
& \lambda \mathrm{P}=\mathrm{M}_{\mathrm{n}} / \mathrm{e} \\
& \lambda=1.6 \text { for live load } \\
& \mathrm{e}=2.875 \text { " } \\
& \mathrm{P}=1404 \text { "\#/(1.6*2.9375") }=299 \#
\end{aligned}
$$

For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 299\# PER BRACKET.

GRAB RAIL BRACKET - HR2J Sunset Series

 MOUNTED TO $1 / 2$ " GLASS PANELLoading 200 lb concentrated load or 50 plf distributed load Grab rail bracket -
1" Dia. 316 Stainless steel bar attached to mount with $3 / 8$ " threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in 1 " bar edge.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger; $\mathrm{F}_{\mathrm{ut}}=$ 90ksi

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=\mathrm{A} * 90 \mathrm{ksi}=0.0775 \mathrm{in}^{2} 290 \mathrm{ksi} \\
& \mathrm{~T}_{\mathrm{u}}=6,975 \# \\
& \mathrm{~T}_{\mathrm{n}}=\emptyset \mathrm{T}_{\mathrm{u}}=0.75 * 6,975 \#=5,231 \# \\
& \mathrm{~T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=5,231 / 1.6=3,270 \# \\
& \lambda=1.6 \text { for live load }
\end{aligned}
$$

Couple moment strength:
$\mathrm{M}_{\mathrm{s}}=3,270 \# * 2 / 3^{*} 1 "=2,180^{\prime \prime} \#$
Factored load per bracket

$$
\begin{aligned}
& \mathrm{P}=\mathrm{M}_{\mathrm{s}} / \mathrm{e} \\
& \mathrm{e}=3.5 " \\
& \mathrm{P}=2,180 " \# /(3.5 ")=623 \#
\end{aligned}
$$

Bending in $1 / 2^{\text {" vertical bar, hardened SS: }}$
$\mathrm{Z}=0.5^{3} / 6=0.02083 \mathrm{in}^{3}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.02083^{*} 45 \mathrm{ksi}=937^{\prime \prime} \#$

Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\mathrm{M}_{\mathrm{n}}\right) / \Omega\right] / \mathrm{H}=[937 / 1.67] / 2.25=250 \#$
For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 250\# PER BRACKET.

GRAB RAIL BRACKET - HR5E Shore Series MOUNTED TO $1 / 2$ " GLASS PANEL Loading 200 lb concentrated load or 50 plf distributed load
Grab rail bracket -
3/4" square 316 Stainless steel bar pressed to the mounting plate.

Mounting plates attached through glass with $3 / 8$ " threaded rod. Bracket strength will be determined by couple between threaded rod in tension and compression in mounting plates on glass.

For 3/8" 316 SS rod ASTM F593-98 CW or stronger;
$\mathrm{F}_{\mathrm{ut}}=90 \mathrm{ksi}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{u}}=\mathrm{A} * 90 \mathrm{ksi}=0.0775 \mathrm{in}^{2} * 90 \mathrm{ksi} \\
& \mathrm{~T}_{\mathrm{u}}=6,975 \# \\
& \mathrm{~T}_{\mathrm{n}}=\varnothing \mathrm{T}_{\mathrm{u}}=0.75 * 6,975 \#=5,231 \# \\
& \mathrm{~T}_{\text {serv }}=\mathrm{T}_{\mathrm{n}} / \lambda=5,231 / 1.6=3,270 \#
\end{aligned}
$$

$$
\lambda=1.6 \text { for live load }
$$

Couple moment strength:
$\mathrm{M}_{\mathrm{s}}=3,270 \# * 2 / 3 * 3 / 4 "=1,635 " \#$
Factored load per bracket
For maximum $\mathrm{H}=2.5$ "

$$
\begin{aligned}
& P=M_{s} / \mathrm{e} \\
& \mathrm{e}=\mathrm{H}+1 "=3.5 " \\
& \mathrm{P}=1,635 " \# /(3.5 ")=467 \#
\end{aligned}
$$

Bending in $3 / 4$ " horizontal bar:
$\mathrm{Z}=0.75^{3} / 4=0.1055 \mathrm{in}^{3}$
$\emptyset \mathrm{M}_{\mathrm{n}}=0.9^{*} 0.1055^{*} 30 \mathrm{ksi}=2,848{ }^{\prime \prime} \#$
Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\varnothing \mathrm{M}_{\mathrm{n}}\right) / 1.6\right] / 2.25^{\prime \prime}=[2,848 / 1.6] / 2.25=791 \#$

Bending in $1 / 2$ " vertical bar, hardened SS:
$\mathrm{Z}=0.5^{3} / 4=0.03125 \mathrm{in}^{3}$
$\phi \mathrm{M}_{\mathrm{n}}=0.03125^{*} 45 \mathrm{ksi}=1,406 " \#$
Vertical service load:
$\mathrm{V}_{\mathrm{S}}=\left[\left(\mathrm{M}_{\mathrm{n}}\right) / \Omega\right] / \mathrm{H}=[1,406 / 1.67] / 2.25=374 \#$
For strength of bracket on glass refer to HR2S calculations
CONTROLLING ALLOWABLE LOAD IS 250\# PER BRACKET.

Grab Rail Attachment to Walls:

Bracket is secured to solid wood blocking using 3/8" closet screw, uses same thread as lag screw so withdrawal and shear capacity is the same as for $3 / 8$ " lag screw.

Withdrawal strength for screw into HF or denser wood ($\mathrm{G} \geq 0.43$)
From NDS Table 11.2A:
W $=243 \# /$ in
$\mathrm{W}^{\prime}=\mathrm{W}^{*} \mathrm{C}_{\mathrm{d}}{ }^{*} \mathrm{e}=243 \#{ }^{\prime \prime}{ }^{*} 1.33 * 2 "$
$W^{\prime}=646 \#$
Moment strength of connection:
$\mathrm{M}_{\mathrm{a}}=646 \#^{*} 1.25^{\prime \prime}=807.5^{\prime \prime} \#$
Allowable load on grab rail:
$\Sigma \mathrm{M}=0=807.5 " \#-\mathrm{P} * 3 "$
$\mathrm{P}=807.5 / 3=269 \#$
horizontal or vertical load:
For shear (NDS Table 11K)
$\mathrm{Z}=160$ \#

$Z^{\prime}=Z^{*} C_{d}=160 * 1.33=213 \#$
Shear strength will control for vertical loads:
maximum spacing:
$\mathrm{s}=213 \# / 50 \mathrm{plf}=4.26{ }^{\prime}$

END PLATE POST
Stainless steel end post for insertion in base shoe to support the top rail where end support is required.

Post strength must be adequate to support 200\# concentrated load (334\# ultimate load strength).
$\mathrm{M}_{\mathrm{u}}=334 \# * 42^{\prime \prime}=14,028 " \#$
For stainless steel plate, 304 or 316, annealed condition:
$\mathrm{F}_{\mathrm{y}}=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=70 \mathrm{ksi}$
$\emptyset=1.0$ weak axis bending
$\mathrm{M}_{\mathrm{n}}=1.25 * \mathrm{~F}_{\mathrm{y}} * \mathrm{~b}^{*} \mathrm{t}^{2} / 6 \geq 14,028$ "\#
$\mathrm{t}=$ glass nominal thickness and $\mathrm{b}=$ post width
Solving for b :
$\mathrm{b}=14,028 * 6 /\left(1.25 * 30,000 * \mathrm{t}^{2}\right)=2.245 / \mathrm{t}^{2}$
For $1 / 2$ " glass:
$\mathrm{b}=2.245 / 0.5^{2}=9^{\prime \prime}$
For $5 / 8$ " glass
$\mathrm{b}=2.245 / 0.625^{2}=5.75$ "
For $3 / 4$ " glass
$\mathrm{b}=2.245 / 0.75^{2}=4$ "
Maximum thickness that can be used in base shoe:
B5 shoes; $\mathrm{t}=1$ ":

$\mathrm{b}=2.245 / 1^{2}=2-1 / 4 "$
B6 shoes; t = 1 1/8" :
b $=2.245 / 1.125^{2}=1-13 / 16 "$
B7 shoes; $\mathrm{t}=1.25^{\prime \prime}$:
b $=2.245 / 1.25^{2}=1-7 / 16 "$

