EDWARD C. ROBISON, PE
C.R.Laurence Co., Inc. 2503 E Vernon Ave.
Los Angeles, CA 90058
(T) 800.421 .6144
(F) 800.587 .7501
www.crlaurence.com

SUBJ: ALUMINUM SIDELITE RAILS

The Aluminum Sidelite Rails utilize aluminum extrusions to construct glazed sidelites. The system is intended for interior and exterior weather exposed applications and is suitable for use in all natural environments. The sidelites are designed for the following criteria:

Concentrated load = 50 lbs on 1 sf any direction, any location
Live Load $=5 \mathrm{psf}$ (for exterior applications wind will always govern)
Wind load as specified, 10 psf minimum inward or outward
Refer to IBC Section 1607.7.1
Exterior installations shall have the fastener spacing specified based on the supporting structure, wind load, glass height and side rail height using the equations or tables included herein.

The Sidelite system when installed as shown will meet or exceed all requirements of the 1997 Uniform Building Code, 2000, 2003 and 2006 International Building Codes, California Building Standards Code, and 2000 and 2005 Aluminum Design Manual. Stainless steel components are designed in accordance with SEI/ASCE 8-02 Specification for the Design of Cold-Formed Stainless Steel Structural Members. Wood components and anchorage to wood are designed in accordance with the National Design Specification for Wood Construction.

Edward Robison, P.E.
Attachments -
Calculations with design equations/tables: 16 pages Details: 4 pages

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Typical Installations:
Top side rail is screwed to the header. Any of the side rail options may be used:

Figure 1

Figure 1A

Allowable load will be dependent on the strength of the connection between the side rail and header.

Load path: Glass side lite will load side rail at the glazing pocket horizontally only (no vertical load component). Side rail will transfer horizontal loads to header by a couple between the screw and rail edge. Horizontal forces will be transferred by direct bearing between the rail and header.

LOAD CASES:
SIDE LITES:
Connections at the top and bottom:
Wind load will control loading at the top and bottom of side lites:
$\mathrm{H}_{\mathrm{O}}=$ rough opening height
$\mathrm{H}_{\mathrm{G}}=$ Glass clear height
$\mathrm{h}_{\mathrm{rt}}=$ top sidelite rail height (sidelite rail with anchor)
$\mathrm{h}_{\mathrm{rb}}=$ bottom sidelite rail height
$\mathrm{w}=$ wind load, inward or outward, 10 psf minimum
$\mathrm{W}=\mathrm{H}_{\mathrm{G}}{ }^{*} \mathrm{~W} / 2=$ wind load from glass to rail
At top of wall:
Sidelight rail resists load by tension/compression couple between screw and rail. Determine screw tension from $\sum \mathrm{M}=0$:
$\mathrm{T}=\left(\mathrm{W} * \mathrm{~h}_{\mathrm{rt}}+\mathrm{h}_{\mathrm{rt}}{ }^{2} / 2 * \mathrm{w}\right) / 15 / 16 "=1 / 2 * \mathrm{w}^{*} \mathrm{~h}_{\mathrm{rt}}\left[\mathrm{H}_{\mathrm{G}}+\mathrm{h}_{\mathrm{rt}}\right] /[(15 / 16) / 12 " / \mathrm{ft})=$ $\mathrm{T}=6.396^{*} \mathrm{w}^{*} \mathrm{~h}_{\mathrm{rt}}\left[\mathrm{H}_{\mathrm{G}}+\mathrm{h}_{\mathrm{rt}}\right]$
per linear foot of rail with w in psf and H_{G} and h_{tt} in feet
Typical installation:
h_{rt} or $\mathrm{h}_{\mathrm{rb}} \quad \mathrm{T}(\mathrm{lbs} / \mathrm{ft})$
$25 / 8^{\prime \prime}=0.21875, \quad 1.4 \mathrm{w}\left[\mathrm{H}_{\mathrm{G}}+0.21875\right]$
$4.25^{\prime \prime}=0.35417^{\prime}$
$2.27 \mathrm{w}\left[\mathrm{H}_{\mathrm{G}}+0.35417\right]$
$6.25 "=0.52083 \prime$
$3.33 \mathrm{w}\left[\mathrm{H}_{\mathrm{G}}+0.52083\right]$
$10.25^{\prime \prime}=0.85417^{\prime}$
$5.47 \mathrm{w}\left[\mathrm{H}_{\mathrm{G}}+0.85417\right]$
$11.875^{\prime \prime}=0.98958^{\prime}$
$6.33 \mathrm{w}\left[\mathrm{H}_{\mathrm{G}}+0.98958\right]$

Screw spacing $=T_{a} / T$
Check screw tear through on sidelite rail:
For 1/4" screw
$\mathrm{P}_{\mathrm{a}}=\mathrm{Ct}_{1} \mathrm{~F}_{\mathrm{tu} 1}\left(\mathrm{D}_{\mathrm{ws}}-\mathrm{D}_{\mathrm{h}}\right) / \mathrm{n}_{\mathrm{s}}$
$\mathrm{n}_{\mathrm{s}}=2.26$
$\mathrm{P}_{\mathrm{a}}=1 * 0.125 * 30 \mathrm{ksi}(0.6875-0.25) / 2.26$
$\mathrm{P}_{\mathrm{a}}=726 \# \quad$ MAXIMUM VALUE FOR T_{a}
$T_{a}=$ lesser of $726 \#$ or pullout strength in substrate.
Figure 1B

Figure 1 C

Check tear through for $3 / 8$ " screw (largest size for use with $1 / 2$ " and $3 / 8$ " glass rails) $\mathrm{P}_{\mathrm{a}}=1 * 0.125 * 30 \mathrm{ksi}(0.84-0.375) / 2.26=772 \#$

Check tear through for $1 / 2$ " screw (largest size for use with $5 / 8$ " and $3 / 4$ " glass rails) $\mathrm{P}_{\mathrm{a}}=1 * 0.125 * 30 \mathrm{ksi}(1.0-0.5) / 2.26=830 \#$

For anchor into concrete:
Typical anchor: $1 / 4$ " concrete screw, wedge or expansion anchor with $1-1 / 2$ " minimum embedment, minimum $3,000 \mathrm{psi}$ concrete $\mathrm{T}_{\mathrm{a}}>\mathrm{P}_{\mathrm{a}}$ Use 726\#
For concrete anchors allowable tension will be controlled by aluminum tear through.
When installed in masonry ($\mathrm{f}_{\mathrm{m}} \geq 1,500 \mathrm{psi}$)
$\mathrm{T}_{\mathrm{a}}=340 \#$ (may be lower in some jurisdictions)
For screws into steel substrate:
\#14 (1/4") Self drilling screws:

| Steel thickness | T_{a} |
| :--- | :--- | :--- |
| 18 ga $0.0451 "$ | $171 \#$ |
| 16 ga $0.0578 "$ | $261 \#$ |
| 14 ga $0.072 "$ | $447 \#$ |
| 12 ga $0.0998 "$ | $555 \#$ |
| 10 ga $0.127 "$ | $882 \#$ limited to $726 \#$ by pull through on rail. |

$3 / 8$ " or $1 / 2$ " self drilling screw to steel, 14 ga minimum thickness allowable tension will be controlled by aluminum tear through.

For $1 / 4$ " screws into wood (from NDS Table 11 K and $11 \mathrm{M}, 0.12$ " side plate):
For wind $\mathrm{C}_{\mathrm{D}}=1.60$

G	T_{a} wood screw	T_{a} lag screw
0.43	$154 * 1.6=246 \#$	$160 * 1.6=256 \# / \prime$
0.46	$164 * 1.6=262 \#$	$160 * 1.6=256 \# / \prime$
0.49	$171 * 1.6=274 \#$	$170 * 1.6=272 \# /$ ",
0.50	$175 * 1.6=280 \#$	$170 * 1.6=272 \# / \prime \prime$
0.55	$188 * 1.6=301 \#$	$180 * 1.6=288 \# /$ ",

DESIGN EXAMPLE FOR CALCULATION OF FASTENER SPACING:
For 25 psf wind load and 12' glass height, to 10 ga steel or concrete $T_{a}=726 \#$:

h_{rt} or h_{rb}	T (lbs/ft)	r spacing (ft)
$25 / 8$ "	$1.4 * 25[12+0.21875]=428 \mathrm{plf}$	726/428 = 1.7 ${ }^{\prime}$ (20")
4.25 "	$2.27 * 25[12+0.35417]=701 \mathrm{plf}$	$726 / 701=1.04{ }^{\prime} \quad\left(12{ }^{\prime \prime}\right)$
5.875"	$3.13 * 25[12+0.48958]=977 \mathrm{plf}$	$726 / 977=0.74{ }^{\prime} \quad\left(9^{\prime \prime}\right)$
6.25 "	$3.33 * 25[12+0.52083]=1,042 \mathrm{plf}$	$726 / 1,042=0.70^{\prime}\left(8^{\prime \prime}\right)$
7.875"	$4.2 * 25[12+0.65625]=1,329 \mathrm{plf}$	$726 / 1,329=0.55{ }^{\prime}$ (7")
10.25"	$5.47 * 25[12+0.85417]=1,758 \mathrm{plf}$	$726 / 1,758=0.41{ }^{\prime}$ ($5^{\prime \prime}$)
11.875"	$6.33 * 25[12+0.98958]=2,056 \mathrm{plf}$	$726 / 2,056=0.35{ }^{\prime}$ (4")

Load limitations on side rail extrusions:

Figure 2

Stress in side rail will be:
shear through sidewalls:
$\mathrm{f}_{\mathrm{v}}=\mathrm{H} /(2 * 0.094 * * 12 ")=\mathrm{H} / 2.256$ in 2
allowable shear stress:
$\mathrm{F}_{\mathrm{v}}=8.5 \mathrm{ksi}$ (ADM Table 2-24)
$\mathrm{H}_{\text {max }}=8.5 \mathrm{ksi}^{*} 2.256 \mathrm{in}^{2}=19.176 \mathrm{k}$
shear will not limit loading
Bending stress in legs of individual cells:
$\mathrm{h}_{\mathrm{c}}=17 / 8^{\prime \prime}$ typical
$\mathrm{M}=\left[\mathrm{H} * \mathrm{~h}_{\mathrm{c}} / 2\right] / 2$ legs $=\mathrm{H} * \mathrm{~h}_{\mathrm{c}} / 4$
$\mathrm{S}=12 " * 0.094 " 2 / 6=0.0177 \mathrm{in}^{3}$
$\mathrm{F}_{\mathrm{bt}}=15 \mathrm{ksi}$ for tension
$\mathrm{b} / \mathrm{t}=1.875 / 0.094 "=19.9<23$
$\mathrm{F}_{\mathrm{bc}}=15 \mathrm{ksi}$ for compression
$\mathrm{M}_{\text {max }}=15 \mathrm{ksi}^{*} 0.0177 \mathrm{in}^{3}=265.5 \#^{\prime \prime} / \mathrm{ft}$
$\mathrm{H}=4 * 265.5 \# " / 1.875=566 \# / \mathrm{ft}$

Overall rail bending moment - tension and compression in sidewalls:
$\mathrm{M}=\mathrm{h}_{\mathrm{r}}{ }^{*} \mathrm{H}$
$\mathrm{T}=\mathrm{C}=\mathrm{M} / 1.75^{\prime \prime}$
$\mathrm{f}_{\mathrm{t}}=\mathrm{f}_{\mathrm{c}}=\left[\mathrm{M} / 1.75^{\prime}\right] /(12 " * 0.094 ")=\mathrm{M} / 1.974 \mathrm{in}^{3}=\mathrm{h}_{\mathrm{r}}{ }^{*} \mathrm{H} / 1.974 \mathrm{in}^{3}$
$\mathrm{H}_{\text {max }}=15 \mathrm{ksi} * 1.974 \mathrm{in}^{3} / \mathrm{h}_{\mathrm{r}}=29.61 \mathrm{k} / \mathrm{h}_{\mathrm{r}}$
for $\mathrm{h}_{\mathrm{r}}=10$ " max
$\mathrm{H}_{\max }=29.61 \mathrm{k} " / 10^{\prime \prime}=2,961 \#$: overall bending will not control design.
Determine maximum horizontal load based on combined effects of cell bending and overall bending:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}+\mathrm{C}_{\mathrm{m}} \mathrm{f}_{\mathrm{b}} /\left[\mathrm{F}_{\mathrm{b}}\left(1-\mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{e}}\right)\right] \text { or } \mathrm{f}_{\mathrm{a}} / \mathrm{F}_{\mathrm{a}}+\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}} \leq 1.0 \text { where } \\
& \mathrm{C}_{\mathrm{m}}=0.6-0.4 *\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)=0.2 \\
& \mathrm{~F}_{\mathrm{e}}=71 \mathrm{ksi} \\
& \text { second equation will control } \\
& \left(\mathrm{h}_{\mathrm{r}} * \mathrm{H} / 1.974 \mathrm{in}^{3}\right) / 15,000+\left(\mathrm{H}^{*} 26.48\right) / 15,000=1.0 \text { solve for } \mathrm{H} \\
& \mathrm{H}=15,000 /\left(\mathrm{h}_{\mathrm{r}} / 1.974 \mathrm{in}^{3}+26.48\right) \\
& \mathrm{h}_{\mathrm{r}} \\
& 23 / 8 " \quad \mathrm{H}_{\mathrm{a}} \\
& 4 " \\
& 6 \quad 15,000 /\left(2.375 / 1.974 \mathrm{in}^{3}+26.48\right)=542 \# / \mathrm{ft} \\
& 6 " \quad 15,000 /\left(4 / 1.974 \mathrm{in}^{3}+26.48\right)=526 \# / \mathrm{ft} \\
& 10 " \quad 15,000 /\left(6 / 1.974 \mathrm{in}^{3}+26.48\right)=508 \# / \mathrm{ft} \\
& 15,000 /\left(10 / 1.974 \mathrm{in}^{3}+26.48\right)=475 \# / \mathrm{ft}
\end{aligned}
$$

TYPICAL INSTALLATIONS:

Determine allowable wind loads and glass height relationships:
$\mathrm{H}=\mathrm{w}^{*} \mathrm{H}_{\mathrm{g}} / 2$
$\mathrm{h}_{\mathrm{r}} \quad$ wind to glass height relationship
$23 / 8 " \quad \mathrm{w}^{*} \mathrm{H}_{\mathrm{g}} / 2=542 \# / \mathrm{ft}$
$4 " \quad w^{*} H_{g} / 2=526 \# / f t$
6" $\quad w^{*} H_{g} / 2=508 \# / f t$
$10 " \quad \mathrm{w}^{*} \mathrm{H}_{\mathrm{g}} / 2=475 \# / \mathrm{ft}$

DESIGN EXAMPLE:

Determine allowable maximum side lite glass height for 25 psf wind load:
$\mathrm{h}_{\mathrm{r}} \quad$ allowable glass height
$23 / 8^{\prime \prime} \quad \mathrm{H}_{\mathrm{g}}=542 \# / \mathrm{ft} * 2 / 25=43.36$ ' will be limited by glass strength
$4 " \quad \mathrm{H}_{\mathrm{g}}=526 \# / \mathrm{ft} * 2 / 25=42.08^{\prime}$ will be limited by glass strength
6" $\quad \mathrm{H}_{\mathrm{g}}=508 \# / \mathrm{ft} * 2 / 25=40.64$ ' will be limited by glass strength
$10^{\prime \prime} \quad \mathrm{H}_{\mathrm{g}}=475 \# / \mathrm{ft} * 2 / 25=38.00$, will be limited by glass strength
Determine allowable maximum wind load for side lite glass height $=12^{\prime}$:

h_{r}	allowable glass height
$23 / 8 "$	$\mathrm{w}=542 \# / \mathrm{ft} * 2 / 12=90.3 \mathrm{psf}$ will be limited by glass strength
$4 "$	$\mathrm{w}=526 \# / \mathrm{ft} * 2 / 12=87.7 \mathrm{psf}$ will be limited by glass strength
$6 "$	$\mathrm{w}=508 \# / \mathrm{ft} * 2 / 12=84.7 \mathrm{psf}$ will be limited by glass strength
$10 "$	$\mathrm{w}=475 \# / \mathrm{ft} * 2 / 12=79.2 \mathrm{psf}$ will be limited by glass strength

For all sidelite rail configurations out of plain bending or deformation of the rails will not control the design

CONCLUSIONS

The critical element of the sidelite rail system is the fastener between the side rail and supporting structure. All side rail profiles may be used for interior or exterior installations. Exterior installations shall have the fastener spacing specified based on the supporting structure, wind load, glass height and side rail height using the equations included previously herein.

5/8" AND 3/4" GLASS SIDELITE RAIL SYSTEM: $5 / 8$ " and $3 / 4$ " glass utilize the widened 4 " square or tapered rail sized for the thicker glass.

The out of plane bending strength of the rail is similar to that for the narrower 4" rails and therefore will not limit the rail loads.

Determine the anchor tension to load relationship:
Figure 3A

Determine screw tension from $\sum \mathrm{M}=0$:
$\mathrm{T}=\left(\mathrm{W}^{*} \mathrm{~h}_{\mathrm{rt}}+\mathrm{h}_{\mathrm{rt}}{ }^{2} / 2 * \mathrm{w}\right) / 1^{\prime \prime}=$
$1 / 2 * \mathrm{w}^{*} \mathrm{~h}_{\mathrm{tt}}\left[\mathrm{H}_{\mathrm{G}}+\mathrm{h}_{\mathrm{rt}}\right] / 1 "=$ $0.5 * \mathrm{w} * \mathrm{~h}_{\mathrm{tt}}\left[\mathrm{H}_{\mathrm{G}}+\mathrm{h}_{\mathrm{tt}}\right]$

Figure 3B
Eq 3

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

SIDELITE GLASS:

All glass is fully tempered glass conforming to the specifications of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. The minimum Modulus of Rupture for the glass Fr is $20,000 \mathrm{psi}$. The actual Fr for the tempered glass is 24 ksi to 26 ksi minimum, therefore the true Safety Factors are larger than shown herein. In accordance with IBC 2407.1.1 glass used as structural balustrade panels shall be designed for a safety factor of 4.0. This is applicable only to structural panels (glass provides support to railing). Other locations the glass stress may be increased by $33 \% ~(\mathrm{SF}=3.0)$ for glass infill panels. Glass not used in guardrails may be designed for a safety factor of 2.5 in accordance with ASTM E1300-00. No safety factor is specified in the IBC, UBC or applicable standards for glass used as divisor walls or partitions. In athletic facilities glass shall be tested in accordance with CPSC 16 CFR Part 1201 and IBC 2408. The appropriate safety factor shall be selected based on the specific application.

Figure 4A
Allowable glass bending stress
Allowable compression stress:
Allowable bearing stress:
$\mathrm{F}_{\mathrm{b}}=24,000 / \mathrm{SF}$

Allowable shear stress:
$\mathrm{F}_{\mathrm{c}}=24,000 \mathrm{psi} / \mathrm{SF}$
$\mathrm{F}_{\mathrm{B}}=24,000 \mathrm{psi} / \mathrm{SF}$
$\mathrm{F}_{\mathrm{v}}=0.5 * 24,000 / \mathrm{SF}$
Bending strength of glass for the given thickness:

$$
\begin{array}{ll}
\mathrm{S}=\frac{12 * *(\mathrm{t})^{2}}{6}=2 *(\mathrm{t})^{2} \mathrm{in}^{3} / \mathrm{ft} & \\
\mathrm{M}_{\mathrm{all}}=6,000 \mathrm{psi} * \mathrm{~S}=\text { (guard application) } & \mathrm{SF}=4 \\
\mathrm{M}_{\mathrm{all}}=8,000 \mathrm{psi} *=\text { (divisor wall) } & \mathrm{SF}=3 \\
\mathrm{M}_{\mathrm{all}}=9,600 \mathrm{psi} *=\text { (windows) } & \mathrm{SF}=2.5
\end{array}
$$

For lites simply supported on two opposite sides the moment and deflection are calculated from basic beam theory, (other sides not supported).
$\mathrm{M}_{\mathrm{w}}=\mu^{*} \mathrm{~h}^{2} / 8$ for uniform load W and span L or
$\mathrm{M}_{\mathrm{p}}=\mathrm{P} * \mathrm{~h} / 4$ for concentrated load P and span L , maximum for $\mathrm{P} @ \mathrm{~h} / 2$
where: $\mu=$ distributed load (psf), $\mathrm{W}=$ uniform load (plf), $\mathrm{P}=$ conc. load
$\mathrm{h}=$ lite height (between supports) and $\mathrm{b}=$ lite width
The allowable loads for a lite height:

$$
\begin{aligned}
& \mu=\mathrm{M}_{\mathrm{all}} * 8 / \mathrm{h}^{2} \\
& \mathrm{Wc}=\mathrm{M}_{\mathrm{all}} * 4 /(\mathrm{h} * \mathrm{~b}) \text { or } \mathrm{Pc}=\mathrm{M}_{\mathrm{all}} * 4 /(\mathrm{h} * \mathrm{~b})
\end{aligned}
$$

Glass stress $=\mathrm{f}_{\mathrm{b}}=\mathrm{M} / \mathrm{S}$
$\mathrm{f}_{\mathrm{b}}=\mathrm{wh}^{2} /(8 * S)=\mathrm{wh}^{2} /\left(8 * 2 \mathrm{t}^{2}\right)=\mathrm{wh}^{2} /\left(16 \mathrm{t}^{2}\right)$
Deflections must be checked for:

Differential deflections <0.9 t (glass thickness) based on 50plf load at mid height

Total deflection $<\mathrm{h} / 60$ at center of glass
Top vertical deflection so that edge bite is not less than the minimum (never controls)
Figure 4B
For differential deflection assume one light is loaded and adjacent is unloaded. For total deflection use total net wind load, air pressure or live load over entire light surface.

For differential deflection:
$\Delta_{\mathrm{d}}=\mathrm{Ph}_{\mathrm{d}}{ }^{3} /(48 \mathrm{EI})$
$\mathrm{P}=50 \#$
$\mathrm{h}_{\mathrm{d}}=$ light height or distance between clamps
$\mathrm{E}=10.4 \times 10^{6}$ psi for glass
$\mathrm{I}=12{ }^{\prime \prime *} \mathrm{t}^{3} / 12=\mathrm{t}^{3}$

Substitute and simplify
$\Delta_{\mathrm{d}}=0.9 \mathrm{t}=50 \mathrm{~h}^{3} /\left(48 * \mathrm{E}^{*} \mathrm{t}^{3}\right)$

Solve for t :
$t^{*} \mathrm{t}^{3}=50 \mathrm{~h}_{\mathrm{d}}{ }^{3} /\left(48 * \mathrm{E}^{*} 0.9\right)$
$\mathrm{t}=0.01826\left(\mathrm{~h}_{\mathrm{d}}{ }^{3}\right)^{1 / 4}$
Solve for h
$\mathrm{h}_{\mathrm{d}}{ }^{3}=0.9 \mathrm{t}^{4} * 48 * \mathrm{E} / 50$
$\mathrm{h}_{\mathrm{d}}=207.9\left(\mathrm{t}^{4}\right)^{1 / 3}$
Maximum light height or bracket spacing for specified glass thickness:

t (in)	h_{d} (in)
$3 / 8$	56
$1 / 2$	82
$5 / 8$	111
$3 / 4$	141

For total deflection
$\Delta_{\mathrm{t}}=5 \mathrm{wh}^{4} /(384 \mathrm{EI})$
where:
$\mathrm{h}=$ light height
$\mathrm{w}=$ greater of wind load, differential air pressure or live load (10 psf
minimum)
$\mathrm{E}=10.4 \times 10^{6}$ psi for glass
$\mathrm{I}=12{ }^{*} * \mathrm{t}^{3} / 12=\mathrm{t}^{3}$

Substitute and simplify
$\Delta=\mathrm{h} / 60=5 \mathrm{w}^{\prime} \mathrm{h}^{4} /\left(384 \mathrm{Et}^{3}\right)$

Solve for h:
$\mathrm{h}^{3}=\left(384 \mathrm{Et}^{3}\right) /(60 * 5 * \mathrm{w})=\left(384 \mathrm{Et}^{3}\right) /(60 * 5 * \mathrm{w} / 12)$
$\mathrm{h}=\left[159,744,000\left(\mathrm{t}^{3}\right)\right]^{1 / 3}$
$\mathrm{h}=542.6 \mathrm{t} /\left(\mathrm{w}^{1 / 3}\right)$
where $w^{\prime}=\mathrm{w} / 12(" / \mathrm{ft})$
Solve for t :
$\mathrm{t}=\mathrm{h}\left(\mathrm{w}^{, 1 / 3}\right) / 542.6$
Eq. 3
Solve for w:
$\mathrm{w}^{\prime}=\left[(384 \mathrm{Et}) \mathrm{h} /\left(60 * 5 \mathrm{~h}^{4}\right)\right]^{* 12}$
$\mathrm{w}=\left(159,744,000 \mathrm{t}^{3}\right) /\left(\mathrm{h}^{3}\right)$
For typical $1 / 2^{\prime \prime}$ fully tempered glass lights
Allowable height for given thickness and load

$\mathrm{w}(\mathrm{psf})$	$\mathrm{t}(\mathrm{in})$	$\mathrm{h}(\mathrm{in})$	stress psi
10	0.5	127.6	3389
15	0.5	111.4	3880
20	0.5	101.2	4270
25	0.5	94.0	4600
30	0.5	88.4	4888
35	0.5	84.0	5146
40	0.5	80.4	5380
45	0.5	77.3	5596
50	0.5	74.6	5796
55	0.5	72.3	5983
60	0.5	70.2	6159

Allowable load for given height and thickness:

$\mathrm{h}(\mathrm{in})$	$\mathrm{t}(\mathrm{in})$	$\mathrm{w}(\mathrm{psf})$	stress
72	0.5	53.5	5778
84	0.5	33.7	4952
96	0.5	22.6	4333
108	0.5	15.9	3852
120	0.5	11.6	3467

For higher loading for a given light height the glass must be reinforced using buttress fins designed for the loading and height to support the light edges.

SYSTEM DESIGN METHODOLOGY:

The maximum allowable rail load increases as the light height decreases because of the deflection limits on the glass allow for much higher loads as the light height decreases. If glass is reinforced with buttress fins the fins will carry most of the glass loads so that this method will not be applicable.

Step 1:
Select glass thickness based on loading and light height. Calculate using Equation 3 (page 10); or see Table 1. Glass deflection will control for sidelights. If higher loads or greater heights are required then buttress fins or other reinforcement is required. Design of the buttress fins is beyond the scope of this report.

Step 2:
Select Rail Type and anchor load from Tables 2a through 2d:
For $3 / 8$ " and $1 / 2$ " glass all rail styles may be used.
For $5 / 8$ " and $3 / 4$ " can only use appropriate 4 " square or tapered rail.
Anchor load may be calculated for the specific light height and wind load using Eq. 1 on page 3.

Step 3:
Calculate the anchor spacing using the allowable anchor tension for the anchor type and substrate from Table 3 or calculated value for other anchor or substrate types.
Anchor spacing:
$\mathrm{S}=\mathrm{T}_{\mathrm{a}} / \mathrm{T}^{*} 12 " / \mathrm{ft}$ inches on center
Step 4:
Determine if storefront clamps are required using table 4. For glass light height:

$$
h_{g} \geq h_{d}
$$

Storefront clamps must be installed so that clear distance:

$$
\mathrm{h}_{\mathrm{c}} \leq 0.75 \mathrm{~h}_{\mathrm{d}}
$$

Refer to figure 4A, 4B and 4C for definition of dimensions.

TABLE 1 controls):
t (in)
0.375
0.375
0.375
0.375
$\mathrm{t}(\mathrm{in})$
0.5
0.5
0.5
0.5
0.5
0.5
$\mathrm{t}(\mathrm{in})$
0.625
0.625
0.625
0.625
0.625
0.625
0.625
0.625
t (in)
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

Allowable load for given height and thickness (deflection

$\mathrm{h}($ in $)$	$\mathrm{w}(\mathrm{psf})$	stress	end reaction
60	39.0	5200	98
72	22.6	4333	68
84	14.2	3714	50
94	10.1	3319	40

h (in)

$\mathrm{w}(\mathrm{psf})$	stress	end reaction
53.5	5778	160
33.7	4952	118
22.6	4333	90
15.9	3852	71
11.6	3467	58

52
end reaction

w (psf)	stress	end reaction
104.5	7222	313
65.8	6190	230
44.1	5417	176
31.0	4815	139
22.6	4333	113
17.0	3939	93
13.1	3611	78
10.3	3333	67

$\mathrm{w}(\mathrm{psf})$	stress	end reaction
180.6	8667	542
113.7	7429	398
76.2	6500	305
53.5	5778	241
39.0	5200	195
29.3	4727	161
22.6	4333	135
17.8	4000	115
14.2	3714	99
11.6	3467	87
10.1	3319	79

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

TABLE 2a:

FOR 3/8" GLASS
Rail Style

Rail Height (in)	Glass Height (in)	Wind/live Load (psf)	TAnchor Tension (plf) 2.625
2.625	84	22.6	196.6
2.625	94	14.2	143.4
3.125	72	10.1	113.8
3.125	84	22.6	235.7
3.125	94	14.2	171.7
4.125	72	10.1	136.2
4.125	84	22.6	315.2
4.125	94	14.2	229.3
4.25	72	10.1	181.6
4.25	84	22.6	325.3
4.25	94	14.2	236.6
4.75	72	10.1	187.3
4.75	84	22.6	366.0
4.75	94	14.2	265.9
6.25	72	10.1	210.4
6.25	84	22.6	490.9
6.25	94	14.2	355.8
6.25	72	10.1	281.1
6.25	84	22.6	490.9
6.25	94	14.2	355.8
6.75	72	10.1	281.1
6.75	84	22.6	533.6
6.75	94	14.2	386.4
8.25	72	10.1	305.1
8.25	84	22.6	664.6
8.25	94	14.2	480.0
10.25	72	10.1	378.4
10.25	84	22.6	846.3
10.25	94	14.2	609.3
10.75	72	10.1	479.4
10.75	84	22.6	893.0
10.75	94	14.2	642.4
11.75	72	10.1	505.2
11.75	84	22.6	987.8
11.75	94	14.2	709.6
	10.1	557.4	

TABLE 2b:

FOR 1/2" GLASS	Rail	Glass	Wind/live	T Anchor
Rail Style	Height (in)	Height (in)	Load (psf)	Tension (plf)
Low profile (low anchor)	2.625	72	53.5	465.5
Low profile (low anchor)	2.625	96	22.6	259.9
Low profile (low anchor)	2.625	120	11.6	165.8
Low profile (tall anchor)	3.125	96	22.6	310.9
Low profile (tall anchor)	3.125	120	11.6	198.2
Low profile (tall anchor)	3.125	72	53.5	557.9
Low profile (w/header)	4.125	96	22.6	414.6
Low profile ($\mathrm{w} / \mathrm{header} \mathrm{)}$	4.125	120	11.6	263.8
Low profile (w/ header)	4.125	72	53.5	746.2
4" all styles (low anchor)	4.25	72	53.5	770.1
4" all styles (low anchor)	4.25	96	22.6	427.7
4" all styles (low anchor)	4.25	120	11.6	272.1
4" all styles (tall anchor)	4.75	72	53.5	866.3
4" all styles (tall anchor)	4.75	96	22.6	480.4
$4{ }^{\prime \prime}$ all styles (tall anchor)	4.75	120	11.6	305.3
$4{ }^{\prime \prime}$ all styles (w/header)	6.25	72	53.5	1162.2
$4{ }^{\prime \prime}$ all styles (w/ header)	6.25	96	22.6	641.5
4" all styles (w/ header)	6.25	120	11.6	406.6
6" Square (low anchor)	6.25	72	53.5	1162.2
6" Square (low anchor)	6.25	96	22.6	641.5
6" Square (low anchor)	6.25	120	11.6	406.6
$6^{\prime \prime}$ Square (tall anchor)	6.75	72	53.5	1263.1
$6{ }^{\prime \prime}$ Square (tall anchor)	6.75	96	22.6	696.2
$6^{\prime \prime}$ Square (tall anchor)	6.75	120	11.6	440.8
$6{ }^{\prime \prime}$ Square (w/ header)	8.25	72	53.5	1573.3
$6{ }^{\prime \prime}$ Square (w/ header)	8.25	96	22.6	863.3
$6{ }^{\prime \prime}$ Square (w/ header)	8.25	120	11.6	545.1
10" Square (low anchor)	10.25	72	53.5	2003.4
10" Square (low anchor)	10.25	96	22.6	1093.2
10" Square (low anchor)	10.25	120	11.6	687.9
$10^{\prime \prime}$ Square (tall anchor)	10.75	72	53.5	2113.9
$10^{\prime \prime}$ Square (tall anchor)	10.75	96	22.6	1151.9
$10^{\prime \prime}$ Square (tall anchor)	10.75	120	11.6	724.2
$10^{\prime \prime}$ Square (w/ header)	11.75	72	53.5	2338.4
10" Square (w/ header)	11.75	96	22.6	1270.9
10" Square (w/ header)	11.75	120	11.6	797.6
EDWARD C. ROBISON, PE 10012 Creviston Dr NW Gig Harbor, WA 98329 253-858-0855/Fax 253-858-0856 elrobison@ narrows.com				

TABLE 2c
5/8" GLASS
4" all styles (low anchor)
4" all styles (low anchor)
$4 "$ all styles (tall anchor)
$4 "$ all styles (w/ header)
$4 "$ all styles (w/header)
TABLE 2d
3/4" GLASS
4" all styles (low anchor)
4 " all styles (tall anchor)
$4^{\prime \prime}$ all styles (w/ header)
4" all styles (w/ header)
$4^{\prime \prime}$ all styles (w/ header)
$4 "$ all styles (w/ header)
$4^{\prime \prime}$ all styles (w/ header)
$4^{\prime \prime}$ all styles (w/ header)

Rail $\begin{array}{cc}\text { Height (in) } & \text { Height (in) } \\ 4.25 & 96 \\ 4.25 & 108 \\ 4.25 & 120\end{array}$
Glass
Height (in)
96
108
120

Wind/live	T Anchor
Load (psf)	Tension (plf)

44.1 31
22.6
497.3
410.2
343.9
292.3
879.4
691.8
558.0
460.1
385.7
327.7
1174.3
922.3
743.0
612.0
512.6
435.2

Rail Height (in)	Glass Height (in)	Wind/live Load (psf)	T Anchor Tension (plf)
4.25	132	29.3	706.9
4.25	144	22.6	593.3
4.25	156	17.8	505.1
4.25	168	14.2	433.1
4.25	180	11.6	378.5
4.25	188	10.1	343.8
4.75	132	29.3	793.0
4.75	144	22.6	665.3
4.75	156	17.8	566.3
4.75	168	14.2	485.5
4.75	180	11.6	424.2
4.75	188	10.1	385.3
6.25	132	29.3	1054.9
6.25	144	22.6	884.3
6.25	156	17.8	752.1
6.25	168	14.2	644.4
6.25	180	11.6	562.6
6.25	188	10.1	510.9

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Table 3: Anchor selection

Table 4
Maximum sidelight height or bracket spacing for specified glass thickness:

t (in)	h_{d} (in)
$3 / 8$	56
$1 / 2$	82
$5 / 8$	111
$3 / 4$	141

SIDELITE RAILS INSTALLATION CONFIGURATIONS		
08 0 0 1 0 0 0 0 1		
On		
	3/8" \& 1/2" Glazing	$\begin{aligned} & \text { 5/8" \& 3/4" } \\ & \text { Glazing } \end{aligned}$

SR Top / Bottom ANCHOR

Use 1/4" (low) or 3/4" (tall) configuration in bottom application.
Typically used in 1/4" (low) configuration in top application Low Profile SR shown. Same applies to all other CRL SR.

Sidelite Rails - Installation Instructions

Widen hole to washer size $+1 / 16$ through glass pocket and all,

Step 4
Drive appropriately sized fastener through rail, Anchor, and into structure

Drill hole (size for selected anchor fastener) from glazing pocket through rail and Anchor (Adapter/Header)

Step 3
Place Anchor (Header/Adapter) where rails will be mounted.
Use it to mark holes in mounting surface.
Drill pilot holes for fasteners or inserts.

SR Glazing Set Up

Setting Block

- $\mathbf{8 0}$ Dur neoprene block w/adhesive backing L=4"
-6063-T5 aluminum L=4"

E.P.D.M. Glazing Vinyls

with 5:1 ratio silicone/water formulation coat

GG12

Used in 4", 6", and 10" Square SRs for 1/2" and 3/4" glazing thickness

Used in 4", 6", and 10" Square SRs for 1/2" and 3/4" glazing thickness

GG12
Used in 4", $\mathbf{6}^{\mathbf{n}}$, and 10" Square SRs for $3 / 8$ " and $5 / 8^{"}$ glazing thickness

SV905
Used in 4", 6", and 10" Square SRs for 3/8" and 5/8" glazing thickness

Glazing engagement

Shown applies to all SRs and configurations

3/8" thru 3/4"|Pglazing thickne

