

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM

SERIES/MODEL: 7400 TYPE: Fixed

Summary of Results			
Thermal Trans	Thermal Transmittance (U-Factor) 0.39		
Condensation 1	Condensation Resistance Factor - Frame (CRF _f) 63		
Condensation Resistance Factor - Glass (CRF _g) 69			
Unit Size	47-1/4" x 59-1/8" (1200 mm x 1502 mm)		
Layer 1	1/4" AFG Comfort Ti-AC36 (e=0.034*, #2)		
Gap	0.50" Gap, Super Spacer Premium (ZF-D), 100% Air	-Filled*	
Layer 2	1/4" Clear		

Reference must be made to Report No. A3935.02-301-46, dated 10/29/10 for complete test specimen description and data.

2524 E. Jensen Ave Fresno, CA 93706 phone: 559-233-8705 fax: 559-233-8360 www.archtest.com

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM 200 Singleton Drive Waxahachie, Texas 75165

Report Number: A3935.02-301-46

Test Date: 10/21/10 Report Date: 10/29/10

Test Record Retention Date: 10/21/14

Test Sample Identification:

Series/Model: 7400

Type: Fixed

Test Sample Submitted by: Client

Test Procedure: The condensation resistance factor (CRF) and thermal transmittance (U) were determined in accordance with AAMA 1503-09, *Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections*

Average warm side ambient temperature
 Average cold side ambient temperature
 5 F
 15 In the side of the side ambient temperature

3. 15 mph dynamic wind applied to test specimen exterior.

4. 0.0" +0.04" static pressure drop across specimen.

Test Results Summary:

1. Condensation resistance factor - Frame (CRF _f)	63
Condensation resistance factor - Glass (CRF _g)	69
2. Thermal transmittance due to conduction (U)	0.39
(U-factors expressed in Btu/hr·ft²·F)	

Test Sample Description:

CONSTRUCTION	Frame
Size (in.) Non-Standard	47-1/4 x 59-1/8
Daylight Opening (in.)	43-5/8 x 55-1/2
CORNERS	Coped
Fasteners	Screws
Sealant	Yes
MATERIAL	AT (0.36")
Color Exterior	Gray
Finish Exterior	Paint
Color Interior	Gray
Finish Interior	Paint
GLAZING METHOD	Interior

Glazing Information:

Layer 1 1/4" AFG Comfort Ti-AC36 (e=0.034*, #2)	
Gap	0.50" Gap, Super Spacer Premium (ZF-D), 100% Air-Filled*
Layer 2	1/4" Clear
Gas Fill Method	N/A*
Desiccant	Yes - Contained within the Spacer

^{*}Stated per Client/Manufacturer

NA Non-Applicable See Description Table Abbreviations

Test Sample Description: (Continued)

COM	COMPONENTS			
	Туре	Quantity	Location	
W	EATHERSTRIP			
	None			
H	ARDWARE			
	None			
D	RAINAGE			
	None			

Test Duration:

- 1. The environmental systems were started at 10:23 hours, 10/20/10.
- 2. The thermal performance test results were derived from 04:10 hours, 10/21/10 to 08:10 hours, 10/21/10.

Condensation Resistance Factor (CRF):

The following information, condensed from the test data, was used to determine the condensation resistance factor:

T_h	=	Warm side ambient air temperature	69.79 F
T_{c}	=	Cold side ambient air temperature	-0.65 F
FT_p	=	Average of pre-specified frame temperatures (14)	43.65 F
FT_r	=	Average of roving thermocouples (4)	38.96 F
W	=	$[(FT_p - FT_r) / (FT_p - (T_c + 10))] \times 0.40$	0.055
FT	=	$FT_p(1-W) + W (FT_r) = Frame Temperature$	43.40 F
GT	=	Glass Temperature	47.67 F
CRF_g	=	Condensation resistance factor – Glass	69
		$CRF_g = (GT - T_c) / (T_h - T_c) \times 100$	
CRF_f	=	Condensation resistance factor – Frame	63
		$CRF_f = (FT - T_c) / (T_h - T_c) \times 100$	

The CRF number was determined to be 63 (on the size as reported). When reviewing this test data, it should be noted that the frame temperature (FT) was colder than the glass temperature (GT) therefore controlling the CRF number. Refer to the 'CRF Report' page and the 'Thermocouple Location Diagram' page of this report.

Thermal Transmittance (U_c):

T_{h}	=	Average warm side ambient temperature	69.79 F		
T_c	=	Average cold side ambient temperature	-0.65 F		
P	=	Static pressure difference across test specimen	0.00 psf		
		15 mph dynamic perpendicular wind at exterior			
Non	Nominal sample area 19.40 ft ²				
Tota	Total measured input to calorimeter 614.37 Btu/hr				
Calo	Calorimeter correction 87.60 Btu/hr				
Net	Net specimen heat loss 526.77 Btu/hr				
U	=	Thermal Transmittance	0.39 Btu/hr·ft ² ·F		

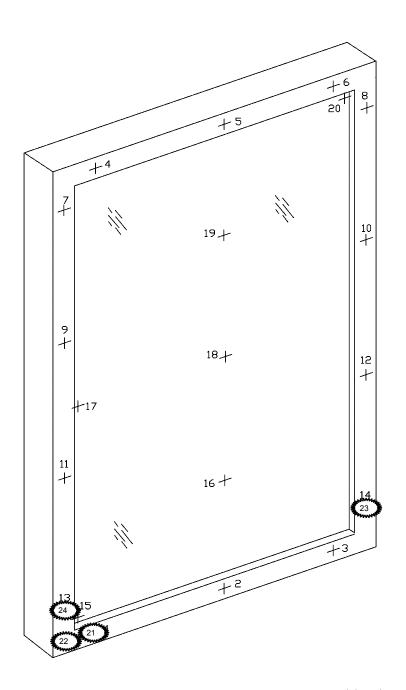
Glazing Deflection (in.):

	Glazing
Edge Gap Width	0.50
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.25
Center gap width at laboratory ambient conditions on day of testing	0.50
Center gap width at test conditions	0.32

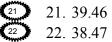
The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

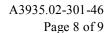
A full calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN 004287) in Fresno, California was conducted in April 2010 in accordance with Architectural Testing Inc. calibration procedure. A calibration check was performed September 2010.

Prior to testing the specimen was sealed with silicone on the interior side and checked for air infiltration per Section 9.3.4.



CRF Report


Time:	06:10	06:40	07:10	07:40	08:10	AVERAGE
Pre-spec	rified Thermocou	ıples - Frame				
1	39.41	39.45	39.49	39.46	39.48	39.46
2	41.35	41.35	41.41	41.47	41.42	41.40
3	39.57	39.50	39.59	39.59	39.63	39.57
4	48.06	48.05	48.08	48.07	48.10	48.07
5	48.04	48.06	48.06	48.04	48.05	48.05
6	48.21	48.22	48.27	48.21	48.25	48.23
7	47.35	47.31	47.33	47.33	47.33	47.33
8	47.00	47.01	46.97	47.02	47.02	47.01
9	45.03	45.07	45.04	45.01	45.03	45.04
10	45.20	45.19	45.22	45.23	45.20	45.21
11	41.82	41.86	41.87	41.84	41.84	41.85
12	41.99	42.06	42.05	42.07	42.05	42.04
13	38.57	38.60	38.63	38.62	38.62	38.61
14	39.28	39.27	39.29	39.31	39.28	39.29
FT_{P}	43.63	43.64	43.66	43.66	43.66	43.65
Pre-spec	rified Thermocou	ıples - Glass				
15	32.69	32.71	32.66	32.72	32.69	32.70
16	51.48	51.46	51.49	51.51	51.45	51.48
17	43.54	43.52	43.55	43.56	43.53	43.54
18	56.51	55.67	55.51	57.71	57.93	56.67
19	54.36	54.34	54.38	54.38	54.39	54.37
20	47.26	47.34	47.29	47.27	47.28	47.29
GT	47.64	47.51	47.48	47.86	47.88	47.67
	int (Roving) The	_				
21	39.41	39.45	39.49	39.46	39.48	39.46
22	38.49	38.33	38.46	38.54	38.53	38.47
23	39.28	39.27	39.29	39.31	39.28	39.29
24	38.57	38.60	38.63	38.62	38.62	38.61
FT_R	38.94	38.91	38.97	38.98	38.98	38.96
W	0.05	0.06	0.05	0.05	0.05	0.05
FT	43.38	43.38	43.41	43.41	43.41	43.40
Warm S	ide - Room Amb	_				
~	69.78	69.78	69.79	69.83	69.83	69.80
Cold Sid	le - Room Ambie	-		0.65	0.65	0.65
	-0.65	-0.65	-0.65	-0.65	-0.65	-0.65
$CRF_{\mathbf{f}}$	63	63	63	63	63	63
$CRF_{\mathbf{g}}$	69	68	68	69	69	69


Thermocouple Location Diagram

Cold Point Locations

Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of four years from the original test date. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing will expire. Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Digitally Signed by: William Smeds

Simon Smeds Technician KC. Missis

Kenny C. White Laboratory Manager Individual-In-Responsible-Charge

WSS:ss A3935.02-301-46

Attachments (pages): This report is complete only when all attachments listed are included.

Appendix-A: Description Table Abbreviations (1)

Appendix-B: Drawings (11)

Revision Log

Rev. #	Date	Page(s)	Revision(s)
0	10/29/10	All	Original Report Issue. Work requested by Mr.
			Don Willard of United States Aluminum

Appendix A: Description Table Abbreviations

CODE	Frame / Sash Types
AI	Aluminum w/ Vinyl Inserts (Caps)
AL	Aluminum
AP	Aluminum w/ Thermal Breaks - Partial
AS	Aluminum w/ Steel Reinforcement
ΑT	Aluminum w/ Thermal Breaks - All Members (≥ 0.21")
AU	Aluminum Thermally Improved - All Members (0.062" - 0.209")
AV	Aluminum / Vinyl Composite
AW	Aluminum-clad Wood
FG	Fiberglass
PA	ABS Plastic w/ All Members Reinforced
PC	ABS Plastic-clad Aluminum
PF	ABS Plastic w/ Foam-filled Insulation
PH	ABS Plastic w/ Horizontal Members Reinforced
PI	ABS Plastic w/ Reinforcement - Interlock
PL	ABS Plastic
PP	ABS Plastic w/ Reinforcement - Partial
PV	ABS Plastic w/ Vertical Members Reinforced
PW	ABS Plastic-clad Wood
ST	Steel
VA	Vinyl w/ All Members Reinforced
VC	Vinyl-clad Aluminum
VF	Vinyl w/ Foam-filled Insulation
VH	Vinyl w/ Horizontal Members Reinforced
VI	Vinyl w/ Reinforcement - Interlock
VP	Vinyl w/ Reinforcement - Partial
VV	Vinyl w/ Vertical Members Reinforced
VW	Vinyl-clad Wood
VY	Vinyl
WA WD	Aluminum / Wood composite
WV	Wood
	Vinyl / Wood composite
WF WC	Fiberglass/Wood Combination
CW	Composite/Wood Composite (Shaped vinyl/wood composite members)
CO	Copper Clad Wood
CO	Vinyl/Wood Composite Material

	Spacer Types (See sealant)
A1	Aluminum
A2	Aluminum (Thermally-broken)
A3	Aluminum-reinforced Polymer
A4	Aluminum / Wood
A5	Aluminum-reinforced Butyl (Swiggle)
A6	Aluminum / Foam / Aluminum
A7	Aluminum U-shaped
A8	Aluminum-Butyl (Corrugated) (Duraseal)
ER	EPDM Reinforced Butyl
FG	Fiberglass
GL	Glass
OF	Organic Foam
P1	Duralite
PU	Polyurethane Foam
SU	Stainless Steel, U-shaped
CU	Coated Steel, U-shaped (Intercept)
S2	Steel (Thermally-broken)
S3	Steel / Foam / Steel
S5	Steel-reinforced Butyl
S6	Steel U-channel w/ Thermal Cap
SS	Stainless Steel
CS	Coated Steel
TP	Thermo-plastic
WD	Wood
ZE	Elastomeric Silicone Foam
ZF	Silicone Foam
ZS	Silicone / Steel
N	Not Applicable
TS	Thermo-plastic w/ stainless steel substrate

CODE	Tint Codes
ΑZ	Azurlite
BL	Blue
BZ	Bronze
CL	Clear
EV	Evergreen
GD	Gold
GR	Green
GY	Gray
LE	Low 'e' Coating
OT	Other (use comment field)
RC	Solar or Reflective Coating
RG	Roller Shades between glazing
RS	Silver (reflective coating)
SF	Suspended Polyester Film
SR	Silver
BG	Blinds between the Glazing
DV	Dynamic Glazing-Variable
DY	Dynamic Glazing-NonVariable
	<u>-</u>

CODE	Gap Fill Codes
AIR	Air
AR2	Argon/Krypton Mixture
AR3	Argon / Krypton / Air
ARG	Argon/Air
CO2	Carbon Dioxide
KRY	Krypton/Air
SF6	Sulfur Hexaflouride
XE2	Xenon/Krypton/Air
XE3	Xenon/Argon/Air
XEN	Xenon/Air
N	Not Applicable

	DOOR DETAILS
N	Not Applicable
CODE	Door Type
EM	Embossed
FL	Flush
LF	Full Lite
LH	1/2 - Lite
LQ	1/4 - Lite
LT	3/4 - Lite
RP	Raised Panel
	-
CODE	Skin
AL	Aluminum
FG	Fiberglass
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	
FG	Fiberglass
PL	Plastic
WP	Wood - Plywood
WS	Wood - Solid
CODE	Sub-Structure
GS	Galvanized Steel
ST	Steel
WD	Wood
VY	Vinyl
CODE	Core Fill
СН	Cellular - Honeycomb
EP	Expanded Polystyrene
PI	Polyisocyanurate
PU	Polyurethane
WP	Wood - Plywood
WS	Wood - Solid
XP	Extruded Polystyrene

CODE	Spacer Sealant
D	Dual Seal Spacer System
S	Single Seal Spacer System

CODE	Grid Description
	No Muntins
G	Grids between glass
S	Simulated Divided Lites
T	True Muntins

CODE	Grid Size Codes
	Blank for no grids
0.75	Grids < 1"
1.5	Grids >= 1"

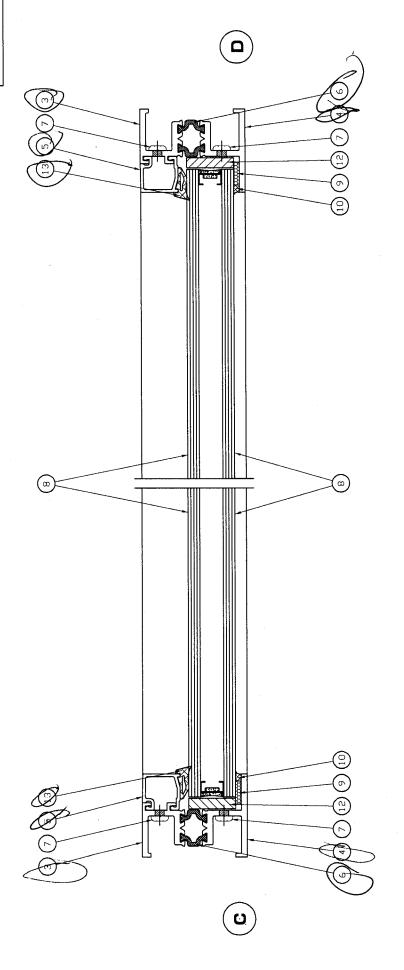
CODE	Thermal Breaks
F	Foam
U	Urethane
V	Vinyl
FB	Fiberglass
О	Other
AB	ABS
NE	Neoprene
ΑI	Air
N	Not Applicable
P	Polyamide

Appendix B: Drawings

BILL OF MATERIALS

QTY. SUPPLIER PART ND COMMENTS UNITS	INTEX-TX LBS.	INTEX-TX LBS	INTEX-TX LBS.	INTEX-TX LBS.	INTEX-TX LBS.	ENSINGER 2280 LBS.	
QTY.	2	- 5	ن	5	4	8	
DESCRIPTION	T-60929 WN 414 FRAME HEAD/SILL INSIDE	7 1-60928 WN 413 FRAME HEAD/SILL DUTSIDE	T-60930 WN 416 FRAME JAMB INSIDE	47 T-60960 WN 415 FRAME JAMB DUTSIDE	5 T-60939 WN 429 DNE INCH GLASS STDP	B)TB146 14.6 mm THERMOBAR	
PART ND	WN 414	WN 413	WN 416	WN 415	WN 429	® TB146	
ITEM I. E. C. PART ND PART ND	1-60929	1-60928	1-60930	1-60960	1-60939	\bigvee_{λ}	
ITEM	U		D	1	J.	(°)
-	-	•	FRAME	1			

B) ST 252	31252	10 AB × 1' PH PAN HD SMS S.S.	8		FRAME SCREWS	PCS.
	⊢				-	
	╀					


	80		\bigvee	1 GLASS					SO. FT.
	6	\bigvee	©GT416	© GT416 1/8" × 1/2" PRESHIM TAPE	A/R				FT.
	10	\bigvee	X	SILICONE CAP BEAD	A/R	TREMCO	SPEC 11	,	FT.
1	11	X	SB-222	SETTING BLDCK (250 × 1" × 4")	2	RYKD			FT.
ULAZ1NG	12	X	0						FT.
•									
				The state of the s					
	۱ ا	P							
	13	$\sum_{i=1}^{N}$	WH 344	WH 344 WEDGE GASKET	A/R			-	FT.
VINYLS			-		·	-			
GASKETS					·				
			-						

OCT 28 2010 Architectural Testing, Inc.
Test sample complies with these details deviations are noted

A3935

Date

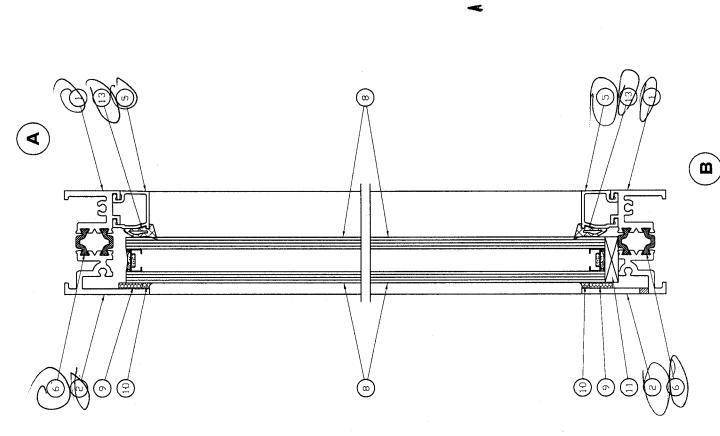
_						
					UNITED STATES ALUMINUM	M
0	C REVISED AS NUTED BR/27/10 DCW	58/27/10	DCW	Willie C.	BILL OF MATERIALS	
@	B REVISED AS NOTED 08/19 WCC	08/19 02	20M	04/13/02	FOR FIXED WINDOW	7400-004C
				{	CSERIES 7400)	1 of 3

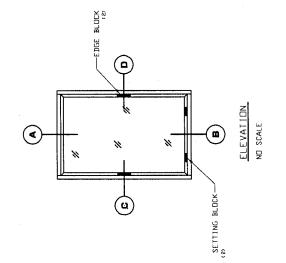
A 3 9 3 5

Report #

Tech

Test semple complies with these details


deviations are noted


OCT 2 8 2010

Report #

Date

MO.			7400-004C	
UNITED STATES ALUMINUM		FIXED WINDOW LAYOUT		(UU72 SJICJS) JEIS 1 11/2
		Willie C.	05/13/02	1010 1111
		MOC.	JO#	
		08/27/10	08/19	
		C REVISED AS NOTED D8/27/10 DCW	B REVISED AS NOTED 08/19 WCC	
		0	(1)	

Archinectural Testing, Inc.
Test sample complies with these details
deviations are noted

A3935

OCT 28 2010

Date Report #
Tech_

	UM			7400-004C		
UNITED STATES ALUMINUM			FIXED WINDOW LAYOUT	·	FIII S17F (SERIES 7400)	
			Willie C.		FIII S17F	
			A)C	азм		
			08/27/10	08/19		
			C REVISED AS NOTED BR27/10 DCV	B REVISED AS NOTED 08/19 VCC		
			0	@		

(C) REVISED AS NOTED DESERVIDED WITHER STATES ALUMINUM (B) REVISED AS NOTED 00/27 wer 05/13/02 SEDIES 2/00)	MUM		7400-004C	2000
	UNITED STATES ALUMN	FIXED WINDOW LAYOUT	-	(SERIES 7400)
REVISED AS NOTED BARZZIG DOV REVISED AS NOTED DOGS? WCC		Willie C.		1213 11111
REVISED AS NOTED BARRYIO REVISED AS NOTED 000/19		DCW	JOA.	
REVISED AS NOTED REVISED AS NOTED		08/27/10	08/19	
		REVISED AS NOTED	REVISED AS NOTED	
		0	@	