C.R. Laurence Co., Inc.

2503 East Vernon
Los Angeles, CA 90058

SUBJ: CR LAURENCE SUN SHADES SERIES 7750

The CRL 7750 Series Aluminum Sun Shades were evaluated in accordance with the 2006 International Building Code and the 2005 Aluminum Design Manual to determine the allowable wind and snow loads.

The sun shades will safely support the following loading:
Distributed live load $=25 \mathrm{psf}$ over projected horizontal surface
Concentrated live load $=300$ \#
Wind load $=50 \mathrm{psf}$
Snow load $=50 \mathrm{psf}$
Snow load + Wind load $=75 \mathrm{psf}$
For corner sections:
Distributed live load $=25 \mathrm{psf}$ over projected horizontal surface
Concentrated live load $=300 \#$
Wind load $=38 \mathrm{psf}$
Snow load $=38$ psf
Snow load + Wind load $=50 \mathrm{psf}$
Loading is based on using Hilti HSL-3 concrete anchors size 8 mm with $2-3 / 8$ " embedment in to concrete with a minimum strength of $f^{\prime}{ }_{c}=2,500 \mathrm{psi}$. The sunshades may be attached to structural steel using 3/8" stainless steel bolts ASTM A276-85a Condition A or stronger.

The supporting structure shall be adequate to support the reactions as shown herein.

Edward Robison, P.E.

Attachments -
Calculations: 7 pages
Shop Drawings: 2 Sheets

Signed 06/03/2009

Edward C. Robison, PE
10012 Creviston DR NW
253-858-0855
Gig Harbor, WA 98329

Calculated in accordance with SEI/ASCE 7-05 Section 6.4 SIMPLIFIED PROCEDURE.

K_{zt} From Figure 6-4 for the site topography $=1.0$.
$\mathrm{V}=$ Wind speed (mph) 3 second gust
$\mathrm{p}_{\text {net } 30}=$ from Figure 6-3 Roof overhangs.
$\lambda=$ from Figure 6-3
$\mathrm{w}_{\mathrm{v}}=\mathrm{p}_{\text {net } 30} * \lambda$ (uplift)

The wind load will cause a vertical uplift force
SNOW LOADING
Calculated in accordance with SEI/ASCE 7-05 Section 7.

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{f}}=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}}=0.7 * 1.1 * 1.2 * 1.0 * \mathrm{p}_{\mathrm{g}}=0.924 \mathrm{p}_{\mathrm{g}} \mathrm{psf} \\
& \mathrm{p}_{\mathrm{s}}=\mathrm{C}_{\mathrm{s}} \mathrm{p}_{\mathrm{f}}=0.38 * \mathrm{p}_{\mathrm{f}}=\mathrm{psf} \\
& \mathrm{p}_{\mathrm{i}}=5 \mathrm{psf} \text { for icing and rain } \\
& \mathrm{S}=\mathrm{p}_{\mathrm{s}}+5.0=\mathrm{psf}
\end{aligned}
$$

ICE LOADING SEI/ASCE 7-05 Section 10
1" Equivalent = 5.2 psf

$\mathrm{L}=10 \mathrm{psf}=20 \mathrm{plf}$
Dead load
$\mathrm{D}=3.2 \mathrm{psf} * 2.33^{\prime}+3.0 \mathrm{plf}=10.5 \mathrm{plf}=3.5 \mathrm{psf}$

CR LAURENCE SERIES 7750 SUNSHADES
36" PROJECTION SUNSHADE
Check based on a standard sun shade length of 48 ":
Bending of corrugated metal:
Metal section properties based on perforated panel having 33\% perforations and 24 ga minimum:
$\mathrm{I}_{\mathrm{x}}=0.104 \mathrm{in}^{4} / \mathrm{ft}$
$\mathrm{S}_{\mathrm{x}}=0.217 \mathrm{in}^{3} / \mathrm{ft}$
Live concentrated load:
$\mathrm{M}_{1}=48^{\prime *} * 300 / 4+0.25 \mathrm{pli} * 48^{\prime 2} / 8=3,672 \# "$
$\mathrm{f}_{\mathrm{b}}=3,672 \#^{\prime \prime} /\left(0.217 \mathrm{in}^{3} * 2.33^{\prime}\right)=7,263 \mathrm{psi}$
Determine allowable stress from SEI/ASCE 8-02 Table A1
$\mathrm{F}_{\mathrm{Y}}=41 \mathrm{ksi}$ longitudinal compression
$\mathrm{M}_{\mathrm{a}}=\mathrm{S} * \mathrm{~F}_{\mathrm{c}}=0.9 * 2.33 * 0.217 * 41 \mathrm{ksi} / 1.6=11,660 \#$ "
Allowable uniform loads on corrugated metal:
$\mathrm{U}=8^{*} \mathrm{M}_{\mathrm{a}} / \mathrm{L}^{2}=\left[8^{*} 11,660 \#^{\prime \prime} / 48^{2}\right] / 2.33=17.38 \mathrm{pli}=208 \mathrm{plf}$
Corrugated metal is attached to end bars by bearing on L1 3/4" x $13 / 4$ " x $1 / 4$ " aluminum angles Allowable load on angle based on bending of bottom leg:
$\mathrm{F}_{\mathrm{bt}}=\mathrm{F}_{\mathrm{bc}}=20 \mathrm{ksi}($ ADM Table 2-24)
$\mathrm{S}=12^{\text {" }} * 0.25^{2} / 6=0.125 \mathrm{in}^{3}$
$M_{a}=0.125^{*} 20 \mathrm{ksi}=2,500 \#$ "
Load on angle lip:
$\mathrm{P}=\mathrm{M}_{\mathrm{a}} / \mathrm{e}=2,500 \#$ '/ $/(1.75 / 2)=2,857 \mathrm{plf}$
Angle bending won't control sun shade loading

CR LAURENCE SERIES 7750 SUNSHADES
Page 4 of 8
Check Bull nose section
Check local bending of bull nose:
Concentrated load:
$\mathrm{M}=200 \# * 6.625 " / 5=265 \# "$
Resisting width $=2 * 6.625^{\prime \prime}+6^{\prime \prime}$
$\mathrm{S}=19.25 " * 0.125^{2} / 6=0.0501 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=265 \# ' / 0.0501=5,286 \mathrm{psi}$
Check for wind load:
$\mathrm{M}=\mathrm{W}^{*} 0.67^{2} / 10=0.04489 \mathrm{~W} \# ' / \mathrm{ft}$
Local bending won't control loading.
Allowable stress from ADM Table 2-21 for 6061-T6 extrusion
$\mathrm{F}_{\mathrm{bt}}=\mathrm{F}_{\mathrm{bc}}=28 \mathrm{ksi}$

Check for bending between supports:
$\mathrm{I}_{x \times}=0.938 \mathrm{in}^{4}$
$\mathrm{~S}_{\mathrm{x}}=0.663 \mathrm{in}^{3}$
determine allowable stress F_{cb} :
$\mathrm{b} / \mathrm{t}=3.36 " / 0.125=26.9$
$\mathrm{F}_{\mathrm{cb}}=27.3-0.292 * 26.9=19.45 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=0.663^{*} 19.45 \mathrm{ksi}=16,896$ "' $^{\prime}=1,075 \#$ '
$\mathrm{U}_{\mathrm{a}}=1,075 \#^{\prime} * 8 / 4^{\prime 2}=537 \mathrm{plf}: 806 \mathrm{psf}$
Bending of bull nose section will not control sunshade loading
Attachment to end angles with (4) \#8 screws:
\#8 countersunk screws:
$\mathrm{P}_{\text {nov }}=\left(0.27+1.45 \mathrm{t}_{1} / \mathrm{D}\right) \mathrm{Dt}_{1} \mathrm{~F}_{\text {ty } 1}$ ADM eq 5.4.2.2-2
$\mathrm{P}_{\text {nov }}=(0.27+1.45 * 0.125 / 0.1339) 0.1339 * 0.125 * 25 \mathrm{ksi}=679 \#$
$\mathrm{P}_{\mathrm{a}}=679 / 3=226 \#$
$\mathrm{Z}_{\mathrm{a}}=2 \mathrm{~F}_{\mathrm{t} 1} \mathrm{Dt}_{1} / \mathrm{n}_{\mathrm{u}}$ ADM Eq 5.4.3-1
$\mathrm{Z}_{\mathrm{a}}=2 * 30 \mathrm{ksi} * 0.1339 * 0.125 / 3=335 \#$ per screw
Screw shear:
$\mathrm{V}_{\mathrm{s}}=0.65 * 33.7 \mathrm{ksi} * 0.014 \mathrm{in}^{2}=307 \#$
Connection strength $=4 * 226 \#=904 \#$ each end
$\mathrm{U}=904 \# /\left(4^{\prime} / 2\right)=452 \mathrm{plf}$
$\mathrm{U}=451 \mathrm{plf} / 0.6677^{\prime}=676 \mathrm{psf}$
(Will not control loading)

CR LAURENCE SERIES 7750 SUNSHADES
Page 5 of 8
ATTACHEMENT TO WALL:
Out rigger bar is welded to wall plate.
Weld strength in accordance with ADM
Section 7.
$1 / 4$ " fillet weld all around bar, 5356 weld filler
$\mathrm{V}_{\mathrm{w}}=\mathrm{F}_{\mathrm{sw}} \mathrm{L}_{\mathrm{we}} / \mathrm{n}_{\mathrm{u}}$
$\mathrm{V}_{\mathrm{w}}=17 \mathrm{ksi} * 8^{\mathrm{N}} * 2 *(0.707 * 0.25) / 1.95=$ 49.3 k
$\mathrm{S}_{\mathrm{w}}=2 *(0.707 * 0.25) * 8^{2} / 6=3.77 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{wa}}=3.77 \mathrm{in}^{3} * 17 \mathrm{ksi} / 1.95=32.87 \mathrm{k}$ "
Check strength of weld affected bar:
$S=0.5 " * 8^{2} / 6=5.33 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{bw}}=5.33 * 6.5 \mathrm{ksi}=34.67 \mathrm{k} "$
Weld strength will control bar loading.
Allowable uniform load on bar:
3' projection and 4' sun shade length:
$\mathrm{U}=32.87 \mathrm{k}{ }^{\prime} * 2 /\left(36^{2}\right)=50.7 \mathrm{pli}=609 \mathrm{plf}$
$\mathrm{u}=609 \mathrm{plf} / 2^{\prime}=304 \mathrm{psf}$
weld strength will not control sun shade loading.

Determine Anchor loads:

For shear:
$\mathrm{V}=\mathrm{U} * 3.5$ '*L/2 for 4' section: $\mathrm{V}=7 \mathrm{U} \mathrm{psf}$
where: $\mathrm{U}=\mathrm{D}+\mathrm{S}$ or W ; or $\mathrm{U}=\mathrm{D}+0.75(\mathrm{~S}+\mathrm{W})$
let $\mathrm{u}=$ greater of W, S or $0.75(\mathrm{~W}+\mathrm{S}) \mathrm{psf}$
$\mathrm{V}=7 *(3.5+\mathrm{u})=24.5+7 \mathrm{u}$
From $\sum \mathrm{M}$ about edge of the wall plate $=0$:
$0=18 " * V-(1.5 "+5 ") * \mathrm{~T}$
solving for T :
$\mathrm{T}=(18 \cdots * \mathrm{~V}) / 6.5=[18 \cdots *(24.5+7 \mathrm{u})] / 6.5$
$\mathrm{T}=67.85+19.38 \mathrm{u}$
Anchor strength:
8mm Hilti HSL-3 embed depth 2-3/8"
Allowable loads from Hilti Technical data and ESR 1545:
$\mathrm{T}=1,167 \#$ (see next page)
$\mathrm{V}=0.65 * 2,107 / 1.6=856 \#$
Substitute into above equations and solve for u :
$\mathrm{V}=856 \#=24.5+7 \mathrm{u}$
$\mathrm{u}=(856-24.5) / 7=118.8 \mathrm{psf}$
from T:

$\mathrm{T}=1,167 \#=67.85+19.38 \mathrm{u}$
$\mathrm{u}=(1,167-67.85) / 19.38=56.7 \mathrm{psf}$
Tension will control allowable loading

Table 5 - HSL-3 Allowable Static Tension (ASD), Normal Weight Cracked Concrete (lb) 1,3,4

Nominal Anchor Diameter	Embedment Depth hef mm (in.)		Concrete Compressive Strength ${ }^{2}$							
			$f^{\prime} \mathrm{c}=2000 \mathrm{psi}$		$f^{\prime} \mathrm{c}=3000 \mathrm{psi}$		$f^{\prime} \mathrm{c}=4000 \mathrm{psi}$		$f^{\prime} \mathrm{c}=6000 \mathrm{psi}$	
			$\begin{gathered} \hline \text { Condition } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { B } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \mathrm{B} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { A } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Condition } \\ \text { B } \\ \hline \end{gathered}$
M8	60	2.36	1,167	1,167	1,429	1,429	1,650	1,650	2,021	2,021
M10	70	2.76	1,867	1,867	2,286	2,286	2,640	2,640	3,233	3,233
M12	80	3.15	3,214	2,785	3,936	3,411	4,545	3,939	5,567	4,825
M16	100	3.94	4,492	3,893	5,501	4,768	6,352	5,505	7,780	6,743
M20	125	4.92	6,277	5,440	7,688	6,663	8,877	7,694	10,873	9,423
M24	150	5.91	8,252	7,152	10,106	8,759	11,670	10,114	14,292	12,387

1 Values are for single anchors with no edge distance or spacing reduction. For other cases, see ESR-1545 Section 4.2 Eq. 5.
2 Values are for normal weight concrete. For sand-lightweight concrete, multiply values by 0.85 . For all-lightweight concrete, multiply values by 0.75 . See ACI 318-05 Section D.3.4.
3 Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
4 Allowable static tension loads for 2,500 psi are calculated by multiplying the pullout strength N_{pn} by the strength reduction ϕ factor of 0.65 and dividing by an α of 1.4 according to ICC ESR-1545 Section 4.2. See Table 2 for $N_{\text {pn. }}$. This load may be adjusted for other concrete strengths according to ICC ESR-1545 Section 4.1.3 by using the following equation.

$$
N_{\mathrm{pn}, \mathrm{cr}, f^{\prime} \mathrm{c}}=N_{\mathrm{pn}, \mathrm{cr}} \sqrt{\frac{f^{\prime} \mathrm{C}}{2500}}
$$

Concrete breakout strength in shear:
$\mathrm{V}_{\mathrm{cbg}}=\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\left(\varphi_{\mathrm{ec}, \mathrm{V}} \varphi_{\mathrm{ed}, \mathrm{V}} \varphi_{\mathrm{c}, \mathrm{V}} \varphi_{\mathrm{h}, \mathrm{V}}\right) \mathrm{V}_{\mathrm{b}}$
$\mathrm{A}_{\mathrm{vc}}=4.5^{*} 2.375^{2}=25.38$
$\mathrm{A}_{\mathrm{vco}}=4.5\left(\mathrm{c}_{\mathrm{a} 1}\right)^{2}=4.5(2.375)^{2}=25.38$
$\varphi_{\mathrm{ec}, \mathrm{v}}=1 /\left[1+2 \mathrm{e}^{\prime} / 3 \mathrm{c}_{\mathrm{a} 1}\right]=1 /[1+2 * 0 /(3 * 2.375)]=1.0$
$\varphi_{\text {ed }, \mathrm{v}}=1.0 \quad\left(\mathrm{c}_{\mathrm{a} 2} \geq 1.5 \mathrm{c}_{\mathrm{a} 1}\right)$
$\varphi_{\mathrm{c}, \mathrm{v}}=1.4$ uncracked concrete
$\varphi_{\mathrm{h}, \mathrm{v}}=\sqrt{ }\left(1.5 \mathrm{c}_{\mathrm{a} 1} / \mathrm{h}_{\mathrm{a}}\right)=\sqrt{ }(1.5 * 2.375 / 2.375)=1.225$
$\mathrm{V}_{\mathrm{b}}=\left[8\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{a}}\right)^{0.2} \sqrt{ } \mathrm{~d}_{\mathrm{a}}\right] 1 \mathrm{l} \mathrm{f}^{\prime}{ }_{\mathrm{c}}\left(\mathrm{c}_{\mathrm{al}}\right)^{1.5}=\left[8(2.375 / 0.313)^{0.2} \sqrt{0.313}\right] 1.0 \sqrt{ } 2500(2.375)^{1.5}=1,228 \#$
$\mathrm{V}_{\mathrm{cb}}=25.38 / 25.38 * 1.0 * 1.4 * 1.225 * 1,228 \#=2,107 \#$
Concrete breakout will control shear strength.
Check bearing strength on bolt holes:
allowable bearing strength from ADM Table 2-24 line 5: $\mathrm{F}_{\mathrm{B}}=31 \mathrm{ksi}$
$\mathrm{B}=0.5$ "*0.313"*31ksi $=4,852 \#$ (bearing on plate won't control loading)
MAXIMUM ALLOWABLE LOADS ON SUN SHADE WITH 36" PROJECTION:
$\mathrm{L}=300$ \#
$\mathrm{S}=50 \mathrm{psf}$
$\mathrm{W}=50 \mathrm{psf}$ downward and 60psf uplift
$\mathrm{S}+\mathrm{W}=75 \mathrm{psf}$

WALL REACTIONS:

Shear: V $=24.5+7 \mathrm{u}$
Tension: $\mathrm{T}=67.85+19.38 \mathrm{u}$
where: $\mathrm{u}=$ greater of W, S or $0.75(\mathrm{~W}+\mathrm{S}) \mathrm{psf}$

Strength of corner assembly:
Corner bar tributary load:
Triangular load: $(0.33 * 0.707) \mathrm{U}$ at wall to $(3.33 * 0.707) \mathrm{U}$ at end
$\mathrm{M}=0.233 \mathrm{U}^{*} 4.243^{\prime 2} / 2+2.35 \mathrm{U}^{*} 4.243^{2} / 3=16.2 \mathrm{U}$
$\mathrm{U}=3.5+\mathrm{u}$
$\mathrm{M}=56.7+16.2 \mathrm{u}$
Bar and weld has same strength as previously checked and therefore will not control the allowable loads.

CR LAURENCE SERIES 7750 SUNSHADES
Corner Assembly Attachment to Wall:
Anchors are 8 " from corner so no reduction in strength for the corner is required.
Maximum loading to the corner bracket is:
From front $2^{\prime} 4 \prime \prime$ tributary
From side 2'4" tributary
From corner: Triangle load varies from 0 to 6'
$\mathrm{V}=2.33{ }^{\prime} * 3^{\prime} * \mathrm{U}+0.5 * 3^{\prime} * 6^{\prime} * \mathrm{U}=16 \mathrm{U}$
$M=7 * 3^{\prime} / 2 * U+9 *(2 / 3) * 3^{\prime} * U=28.5 U^{\prime}$
Determine moment strength of bracket anchorage to wall:
Each anchor is loaded in shear from parallel segment and tension by perpendicular segment.
For combined case:

$$
\mathrm{T} / \mathrm{T}_{\mathrm{a}}+\mathrm{V} / \mathrm{V}_{\mathrm{a}} \leq 1.2
$$

When properly installed the tension load will be achieved before the shear load.
From page 6:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}}=1,167 \# \\
& \mathrm{~V}_{\mathrm{a}}=856 \#
\end{aligned}
$$

From Σ of moments about bottom edge of bracket:
On parallel face top anchor is in tension, bottom anchor resists vertical shear,
On perpendicular face both anchors act in shear
Result is that top bolts are loaded in tension with shear load and bottom bolts are loaded in shear only
$\mathrm{M}_{\mathrm{a}}=1.0 * \mathrm{~T}_{\mathrm{a}} * 6.5 "+0.2 * \mathrm{~V}_{\mathrm{a}} * \sqrt{ }\left(6.5^{2}+8^{2}\right)+0.707 * 1.0 \mathrm{~V}_{\mathrm{a}} * \sqrt{ }\left(1.5^{2}+8^{2}\right)=6.5 \mathrm{~T}_{\mathrm{a}}+7.82 \mathrm{~V}_{\mathrm{a}}=$ $M_{a}^{a}=6.5^{*} 1,167+7.82 * 856 \stackrel{a}{=} 14,279 \# \prime=1,190 \# '$ each way.
$28.5 \mathrm{U}=1,190 \#$ '
$\mathrm{U}=1,190 / 28.5=41.75 \mathrm{psf}$
$\mathrm{u}=\mathrm{U}-3.5 \mathrm{psf}=41.75-3.5=38.25 \mathrm{psf}$
MAXIMUM ALLOWABLE LOADS ON SUN SHADE CORNER WITH 36" PROJECTION:
L = 300\#
$\mathrm{S}=38 \mathrm{psf}$
$\mathrm{W}=38 \mathrm{psf}$ downward and 43psf uplift
$\mathrm{S}+\mathrm{W}=50 \mathrm{psf}$
WALL REACTIONS:
Shear: V = $16 u+56$
Tension: $\mathrm{T}=100+28.5 \mathrm{u}$
where: $u=$ greater of W, S or $0.75(\mathrm{~W}+\mathrm{S}) \mathrm{psf}$

