

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM

SERIES/MODEL: HP3252 Curtain Wall TYPE: Glazed Wall Systems (Site-built)

Summary of Results				
Thermal Transmittance (U-Factor) 0.28				
Condensation Resistance Factor - Frame (CRF _f) 77		77		
Condensation	Resistance Factor - Glass (CRF _g)	74		
Unit Size	78-3/4" x 78-3/4" (2000 mm x 2000 mm)			
Layer 1	ayer 1 1/4" Cardinal LoE 272 (e=0.042*, #2)			
Gap 1	Sap 1 0.25" Gap, Coated Steel Spacer (CS-D), 95% Krypton-Filled*			
Layer 2 0.003 Southwall Technologies TC88 Heat Mirror (e=0.127*, #3 / 0.109*, #4)				
Gap 2 0.25" Gap, Coated Steel Spacer (CS-D), 95% Krypton-Filled*				
Layer 3 1/4" Clear				

Reference must be made to Report No. 99979.02-201-46, dated 10/12/10 for complete test specimen description and data.

849 Western Avenue North St. Paul, MN 55117 phone: 651-636-3835

fax: 651-636-3843 www.archtest.com

AAMA 1503-09 THERMAL PERFORMANCE TEST REPORT

Rendered to:

UNITED STATES ALUMINUM 200 Singleton Drive Waxahachie, Texas 75165

Report Number: 99979.02-201-46

Test Date: 08/16/10
Report Date: 08/16/10
Revision 1 Date: 10/12/10

Test Record Retention Date: 08/16/14

Test Sample Identification:

Series/Model: HP3252 Curtain Wall

Type: Glazed Wall Systems (Site-built)

Test Sample Submitted by: Client

Test Procedure: The condensation resistance factor (CRF) and thermal transmittance (U) were determined in accordance with AAMA 1503-09, *Voluntary Test Method for Thermal Transmittance and Condensation Resistance of Windows, Doors and Glazed Wall Sections*

Average warm side ambient temperature
 Average cold side ambient temperature
 59.73 F
 Average cold side ambient temperature

3. 15 mph dynamic wind applied to test specimen exterior.

4. 0.0" +0.04" static pressure drop across specimen.

Test Results Summary:

1. Condensation resistance factor - Frame (CRF _f)	77
Condensation resistance factor - Glass (CRF _g)	74
2. Thermal transmittance due to conduction (U)	0.28
(U-factors expressed in Btu/hr·ft²·F)	

www.archtest.com

99979.02-201-46 Page 2 of 9 Revision 1 Date: 10/12/10

Test Sample Description:

CONSTRUCTION	Frame	
Size (in.) Non-Standard	78-3/4 x 78-3/4	
Daylight Opening (in.)	35-1/2 x 73-1/4 (x2)	
CORNERS	Butt Screws	
Fasteners		
Sealant	Yes	
MATERIAL	AT (0.24")	
Color Exterior	Gray	
Finish Exterior	Paint	
Color Interior	Gray	
Finish Interior	Paint	
GLAZING METHOD	Pressure	

Glazing Information:

Layer 1	Layer 1 1/4" Cardinal LoE 272 (e=0.042*, #2)		
Gap 1 0.25" Gap, Coated Steel Spacer (CS-D), 95% Krypton-Filled*			
Layer 2	0.003 Southwall Technologies TC88 Heat Mirror (e=0.127*, #3 / 0.109*, #4)		
Gap 2	0.25" Gap, Coated Steel Spacer (CS-D), 95% Krypton-Filled*		
Layer 3	1/4" Clear		
Gas Fill Method	Evacuated Chamber*		
Desiccant	Yes		

^{*}Stated per Client/Manufacturer

NA Non-Applicable See Description Table Abbreviations

99979.02-201-46 Page 3 of 9

Revision 1 Date: 10/12/10

Test Sample Description: (Continued)

COMPONENTS				
	Type	Quantity	Location	
WE	ATHERSTRIP			
N	o weatherstrip			
HAI	RDWARE			
N	o hardware			
DRA	AINAGE			
N	lo drainage			

99979.02-201-46 Page 4 of 9

Revision 1 Date: 10/12/10

Test Duration:

- 1. The environmental systems were started at 14:30 hours, 08/15/10.
- 2. The thermal performance test results were derived from 03:16 hours, 08/16/10 to 07:16 hours, 08/16/10.

Condensation Resistance Factor (CRF):

The following information, condensed from the test data, was used to determine the condensation resistance factor:

T_h	=	Warm side ambient air temperature	69.73 F
T_c	=	Cold side ambient air temperature	-0.12 F
FT_p	=	Average of pre-specified frame temperatures (14)	53.66 F
FT_r	=	Average of roving thermocouples (4)	49.21 F
W	=	$[(FT_p - FT_r) / (FT_p - (T_c + 10))] \times 0.40$	0.041
FT	=	$FT_p(1-W) + W (FT_r) = Frame Temperature$	53.48 F
GT	=	Glass Temperature	51.88 F
CRF_g	=	Condensation resistance factor – Glass	74
		$CRF_g = (GT - T_c) / (T_h - T_c) \times 100$	
CRF_f	=	Condensation resistance factor – Frame	77
		$CRF_f = (FT - T_c) / (T_h - T_c) \times 100$	

The CRF number was determined to be 74 (on the size as reported). When reviewing this test data, it should be noted that the glass temperature (GT) was colder than the frame temperature (FT) therefore controlling the CRF number. Refer to the 'CRF Report' page and the 'Thermocouple Location Diagram' page of this report.

99979.02-201-46 Page 5 of 9

Revision 1 Date: 10/12/10

Thermal Transmittance (U_c):

T_h	=	Average warm side ambient temperature	69.73 F
T_{c}	=	Average cold side ambient temperature	-0.12 F
P	=	Static pressure difference across test specimen	0.00 psf
		15 mph dynamic perpendicular wind at exterior	
Non	ninal	sample area	43.07 ft^2
Tota	al me	easured input to calorimeter	952.15 Btu/hr
Calo	orim	eter correction	111.31 Btu/hr
Net	spec	imen heat loss	840.84 Btu/hr
U	=	Thermal Transmittance	0.28 Btu/hr·ft ² ·F

Glazing Deflection (in.):

	Left Glazing	Right Glazing
Edge Gap Width	0.25 / 0.25	0.25 / 0.25
Estimated center gap width upon receipt of specimen in laboratory (after stabilization)	0.30 / 0.30	0.30 / 0.30
Center gap width at laboratory ambient conditions on day of testing	0.30 / 0.30	0.30 / 0.30
Center gap width at test conditions	0.24 / 0.23	0.25 / 0.23

The sample was inspected for the formation of frost or condensation, which may influence the surface temperature measurements. The sample showed no evidence of condensation/frost at the conclusion of the test.

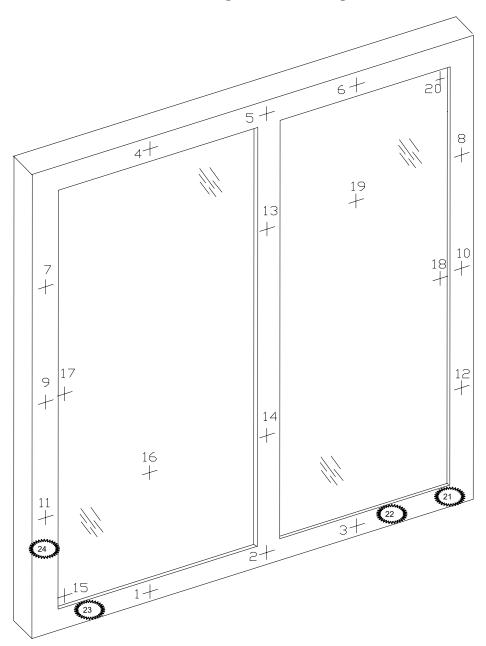
A calibration of the Architectural Testing Inc. 'thermal test chamber' (ICN N000235) in St. Paul, Minnesota was conducted in October 2009 in accordance with Architectural Testing Inc. calibration procedure.

Prior to testing the specimen was sealed with silicone on the interior side and checked for air infiltration per Section 9.3.4.

99979.02-201-46 Page 6 of 9

Revision 1 Date: 10/12/10

CRF Report


Time.	05:16	05:46	06:16	06:46	07:16	AVERAGE			
Pre-s _l	Pre-specified Thermocouples - Frame								
1	52.46	52.46	52.44	52.47	52.46	52.46			
2	52.54	52.54	52.52	52.53	52.55	52.54			
3	48.78	48.78	48.81	48.79	48.79	48.79			
4	57.12	57.11	57.11	57.11	57.14	57.12			
5	55.22	55.16	55.17	55.21	55.23	55.20			
6	51.08	51.09	51.09	51.07	51.14	51.10			
7	52.91	52.93	52.92	52.94	52.97	52.93			
8	56.62	56.63	56.63	56.68	56.67	56.65			
9	53.74	53.75	53.73	53.76	53.79	53.75			
10	55.32	55.34	55.33	55.35	55.35	55.34			
11	50.66	50.67	50.67	50.68	50.69	50.67			
12	51.40	51.44	51.41	51.44	51.43	51.42			
13	58.25	58.27	58.27	58.27	58.31	58.27			
14	55.04	55.04	55.04	55.06	55.04	55.05			
FT_{P}	53.65	53.66	53.65	53.67	53.68	53.66			
_	pecified Thermoco	_							
15	39.95	39.94	39.92	39.97	39.94	39.94			
16	60.56	60.58	60.56	60.58	60.60	60.58			
17	54.48	54.44	54.45	54.47	54.48	54.46			
18	44.01	44.02	44.02	44.01	44.04	44.02			
19	62.25	62.28	62.26	62.27	62.26	62.26			
20	49.99	49.97	50.00	49.99	49.98	49.99			
GT	51.87	51.87	51.87	51.88	51.88	51.88			
	Point (Roving) The	_			.=				
21	47.17	47.15	47.16	47.16	47.19	47.17			
22	48.78	48.78	48.81	48.79	48.79	48.79			
23	50.23	50.21	50.22	50.21	50.21	50.22			
24	50.66	50.67	50.67	50.68	50.69	50.67			
FT_R		49.20	49.21	49.21	49.22	49.21			
W	0.04	0.04	0.04	0.04	0.04	0.04			
FT	53.47	53.48	53.47	53.49	53.50	53.48			
Warn	n Side - Room Amb	_		60.77	60.71	60.72			
69.76 69.64 69.76 69.77 69.71 69.73									
Cold Side - Room Ambient Air Temperature									
	-0.13	-0.09	-0.11	-0.11	-0.11	-0.11			
CRF	f 77	77	77	77	77	77			
CRF	g 74	75	74	74	74	74			

99979.02-201-46 Page 7 of 9

Revision 1 Date: 10/12/10

Thermocouple Location Diagram

Cold Point Locations

21. 47.17 22. 22. 48.79

23. 50.22

24. 50.67

99979.02-201-46 Page 8 of 9

Revision 1 Date: 10/12/10

Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of four years from the original test date. At the end of this retention period such materials shall be discarded without notice and the service life of this report by Architectural Testing will expire. Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

the a. Westland

Digitally Signed by: John A. Westlund

John A. Westlund

Technician

Michael P. Resech

Senior Project Manager

Individual-In-Responsible-Charge

JAW:_jaw 99979.02-201-46

Attachments (pages): This report is complete only when all attachments listed are included.

Appendix-A: Description Table Abbreviations (1)

Appendix-B: Drawings (11)